Determination of the interface position for some nonlinear diffusion problems

被引:5
作者
Okrasinski, W
Vila, S
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
[2] Univ Extremadura, Dept Matemat, E-06071 Badajoz, Spain
[3] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
关键词
nonlinear diffusion; interface front determination;
D O I
10.1016/S0893-9659(98)00061-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study some nonlinear diffusion problems in which the interface position is determined by eta(0)root t We present some analytical and numerical methods to determine the value of eta(0) with a large exactness. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:85 / 89
页数:5
相关论文
共 12 条
[1]  
[Anonymous], NONLINEAR DYNAMICT
[2]  
CANNON JR, 1984, ENCY MATH ITS APPL, V23
[3]   PROPERTIES OF SOLUTIONS TO THE INITIAL-BOUNDARY VALUE-PROBLEM FOR A POROUS MEDIA-TYPE EQUATION [J].
GONCERZEWICZ, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1992, 15 (05) :299-314
[4]   HIGH-CONCENTRATION ARSENIC DIFFUSION IN CRYSTALLINE SILICON - AN ASYMPTOTIC ANALYSIS [J].
KING, JR .
IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 38 (02) :87-95
[5]   APPROXIMATE SOLUTIONS TO A NONLINEAR DIFFUSION EQUATION [J].
KING, JR .
JOURNAL OF ENGINEERING MATHEMATICS, 1988, 22 (01) :53-72
[6]   ZN DIFFUSION IN GAAS UNDER CONSTANT AS PRESSURE [J].
LUQUE, A ;
MARTIN, J ;
ARAUJO, GL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1976, 123 (02) :249-254
[7]   ON APPROXIMATE SOLUTIONS TO SOME NONLINEAR DIFFUSION-PROBLEMS [J].
OKRASINSKI, W .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1993, 44 (04) :722-731
[8]   POWER-SERIES SOLUTIONS TO SOME NONLINEAR DIFFUSION-PROBLEMS [J].
OKRASINSKI, W .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1993, 44 (06) :988-997
[9]  
RYBARSKI A, 1973, INTEGRAL EQUATION DE
[10]  
VILA S, 1997, UNPUB NUMERICAL APPR