Asymptotic behavior for the Stokes flow and Navier-Stokes equations in half spaces

被引:22
作者
Han, Pigong [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Key Lab Random Complex Struct & Data Sci, Beijing 100190, Peoples R China
关键词
Navier-Stokes equations; Weak and strong solutions; Asymptotic behavior; Solution formula; SPATIAL DECAYS; SEMIGROUP;
D O I
10.1016/j.jde.2010.05.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the solution formula in Ukai (1987)[27] for the Stokes equations, we find asymptotic profiles of solutions in L-1 (R-+(n)) (n >= 2) for the Stokes flow and non-stationary Navier-Stokes equations. Since the projection operator P: L-1 (R-+(n)) --> L-sigma(1)(R-+(n)) is unbounded, we use a decomposition for P(u . del u) to overcome the difficulty, and prove that the decay rate for the first derivatives of the strong solution u of the Navier-Stokes system in L-1 (R-+(n)) is controlled by t(-1/2)(1 + t(-n+2/n)) for any t > 0. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1817 / 1852
页数:36
相关论文
共 50 条
[21]   Asymptotic behavior of the 3D incompressible Navier-Stokes equations with damping [J].
Peng, Fuxian ;
Jin, Xueting ;
Yu, Huan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 244
[22]   ASYMPTOTIC BEHAVIOR OF THE LINEARIZED PROBLEM FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH FREE SURFACE [J].
Huang, Yongting .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (11) :4569-4594
[23]   Asymptotic Behavior of Solutions of the Stationary Navier-Stokes Equations in an Exterior Domain [J].
Lin, Ching-Lung ;
Uhlmann, Gunther ;
Wang, Jenn-Nan .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (06) :2093-2106
[24]   Asymptotic behavior of the energy and pointwise estimates for solutions to the Navier-Stokes equations [J].
Brandolese, L .
REVISTA MATEMATICA IBEROAMERICANA, 2004, 20 (01) :223-256
[25]   ASYMPTOTIC BEHAVIOR OF STOCHASTIC DELAY NAVIER-STOKES EQUATIONS ON UNBOUNDED DOMAINS [J].
Zhang, Qiangheng ;
Caraballo, Tomas ;
Yang, Shuang .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2025, 23 (04) :1139-1166
[26]   Asymptotic behavior for strong solutions of the Navier-Stokes equations with external forces [J].
Zheng, SM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (04) :435-446
[27]   Stokes and Navier-Stokes equations with Navier boundary conditions [J].
Acevedo Tapia, P. ;
Amrouche, C. ;
Conca, C. ;
Ghosh, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 :258-320
[28]   The Asymptotic Properties of Turbulent Solutions to the Navier-Stokes Equations [J].
Skalak, Zdenek .
ACTA POLYTECHNICA, 2012, 52 (06) :99-104
[29]   Topological asymptotic expansion for the full Navier-Stokes equations [J].
Hassine, Maatoug ;
Chaouch, Sana .
ASYMPTOTIC ANALYSIS, 2023, 133 (1-2) :91-121
[30]   Convergence of the relaxed compressible Navier-Stokes equations to the incompressible Navier-Stokes equations [J].
Ju, Qiangchang ;
Wang, Zhao .
APPLIED MATHEMATICS LETTERS, 2023, 141