Asymptotic behavior for the Stokes flow and Navier-Stokes equations in half spaces

被引:22
作者
Han, Pigong [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Key Lab Random Complex Struct & Data Sci, Beijing 100190, Peoples R China
关键词
Navier-Stokes equations; Weak and strong solutions; Asymptotic behavior; Solution formula; SPATIAL DECAYS; SEMIGROUP;
D O I
10.1016/j.jde.2010.05.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the solution formula in Ukai (1987)[27] for the Stokes equations, we find asymptotic profiles of solutions in L-1 (R-+(n)) (n >= 2) for the Stokes flow and non-stationary Navier-Stokes equations. Since the projection operator P: L-1 (R-+(n)) --> L-sigma(1)(R-+(n)) is unbounded, we use a decomposition for P(u . del u) to overcome the difficulty, and prove that the decay rate for the first derivatives of the strong solution u of the Navier-Stokes system in L-1 (R-+(n)) is controlled by t(-1/2)(1 + t(-n+2/n)) for any t > 0. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1817 / 1852
页数:36
相关论文
共 50 条
  • [11] On Critical Spaces for the Navier-Stokes Equations
    Pruess, Jan
    Wilke, Mathias
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (02) : 733 - 755
  • [12] Asymptotic behavior of weak solutions to the damped Navier-Stokes equations
    Yu, Huan
    Zheng, Xiaoxin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (02) : 1009 - 1018
  • [13] Asymptotic behavior for the Navier-Stokes equations with nonzero external forces
    Bae, Hyeong-Ohk
    Brandolese, Lorenzo
    Jin, Bum Ja
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E292 - E302
  • [14] POINTWISE WAVE BEHAVIOR OF THE NAVIER-STOKES EQUATIONS IN HALF SPACE
    Du, Linglong
    Wang, Haitao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (03) : 1349 - 1363
  • [15] On asymptotic dynamics of solutions of the homogeneous Navier-Stokes equations
    Skalak, Zdenek
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (04) : 981 - 1004
  • [16] Flow Representation of the Navier-Stokes Equations in Weighted Sobolev Spaces
    Sirisubtawee, Sekson
    Manitcharoen, Naowarat
    Saksurakan, Chukiat
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [17] Asymptotic structure for solutions of the Navier-Stokes equations
    Ma, T
    Wang, SH
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 11 (01) : 189 - 204
  • [18] Asymptotic behavior of the steady Navier-Stokes flow in the exterior domain
    Men, Yueyang
    Wang, Wendong
    Zhao, Lingling
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (09) : 7311 - 7325
  • [19] Asymptotic stability for the Navier-Stokes equations in Ln
    Zhou, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (02): : 191 - 204
  • [20] Asymptotic behavior of the 3D incompressible Navier-Stokes equations with damping
    Peng, Fuxian
    Jin, Xueting
    Yu, Huan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 244