RC-positivity and rigidity of harmonic maps into Riemannian manifolds

被引:1
作者
Wang, Jun [1 ]
Yang, Xiaokui [2 ,3 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Morningside Ctr Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Hua Loo Keng Ctr Math Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
RC-positivity; harmonic maps; pluri-harmonic maps; rigidity; GENERAL SCHWARZ-LEMMA; COMPLEX-ANALYTICITY; PLURIHARMONIC MAPS; HOLOMORPHICITY; MONOTONICITY; CURVATURES;
D O I
10.1007/s11425-018-9398-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that every harmonic map from a compact Kahler manifold with uniformly RC-positive curvature to a Riemannian manifold with non-positive complex sectional curvature is constant. In particular, there is no non-constant harmonic map from a compact Kahler manifold with positive holomorphic sectional curvature to a Riemannian manifold with non-positive complex sectional curvature.
引用
收藏
页码:371 / 380
页数:10
相关论文
共 39 条