Langevin model for real-time Brownian dynamics of interacting nanodefects in irradiated metals

被引:58
作者
Dudarev, S. L. [1 ]
Gilbert, M. R. [1 ,2 ]
Arakawa, K. [3 ,4 ,5 ]
Mori, H. [3 ]
Yao, Z. [2 ,6 ]
Jenkins, M. L. [2 ]
Derlet, P. M. [7 ]
机构
[1] Culham Ctr Fus Energy, EURATOM CCFE Fus Assoc, Abingdon OX14 3DB, Oxon, England
[2] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[3] Osaka Univ, Res Ctr Ultra High Voltage Electron Microscopy, Osaka 5670047, Japan
[4] Okinawa Inst Sci & Technol, Okinawa 9040411, Japan
[5] JST, CREST, Chiyoda Ku, Tokyo 1020075, Japan
[6] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada
[7] Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
GLISSILE INTERSTITIAL CLUSTERS; HEAVY-ION IRRADIATIONS; KINETIC MONTE-CARLO; DISLOCATION LOOPS; COMPUTER-SIMULATION; DAMAGE EVOLUTION; ELASTIC INTERACTION; FREQUENCY FACTORS; DEFECT CLUSTERS; THIN-FOILS;
D O I
10.1103/PhysRevB.81.224107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In situ real-time electron microscope observations of metals irradiated with ultrahigh-energy electrons or energetic ions show that the dynamics of microstructural evolution in these materials is strongly influenced by long-range elastic interactions between mobile nanoscale radiation defects. Treating long-range interactions is also necessary for modeling microstructures formed in ex situ high-dose-rate ion-beam irradiation experiments, and for interpolating the ion-beam irradiation data to the low-dose-rate limit characterizing the neutron irradiation environments of fission or fusion power plants. We show that simulations, performed using an algorithm where nanoscale radiation defects are treated as interacting Langevin particles, are able to match and explain the real-time dynamics of nanodefects observed in in situ electron microscope experiments.
引用
收藏
页数:15
相关论文
共 68 条
[21]   Coherent motion of interstitial defects in a crystalline material [J].
Dudarev, SL .
PHILOSOPHICAL MAGAZINE, 2003, 83 (31-34) :3577-3597
[22]   Thermal friction and Brownian motion of interstitial defects in irradiated materials [J].
Dudarev, SL .
JOURNAL OF NUCLEAR MATERIALS, 2002, 307 :881-885
[23]   Escape by diffusion from a square well across a square barrier [J].
Felderhof, B. U. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (01) :39-56
[24]   DIFFUSION OF INTERACTING BROWNIAN PARTICLES [J].
FELDERHOF, BU .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (05) :929-937
[25]   Dislocation pile-ups in Fe at high temperature [J].
Fitzgerald, S. P. ;
Dudarev, S. L. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2098) :2549-2559
[26]   Interaction between dislocations in bcc iron at high temperature [J].
Fitzgerald, S. P. ;
Dudarev, S. L. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 386-88 :67-70
[27]   Shape of prismatic dislocation loops in anisotropic -Fe [J].
Fitzgerald, Steven P. ;
Yao, Zhongwen .
PHILOSOPHICAL MAGAZINE LETTERS, 2009, 89 (09) :581-588
[28]  
FOREMAN AJE, 1962, 4170 AERE
[29]   First principles calculations in iron: structure and mobility of defect clusters and defect complexes for kinetic modelling [J].
Fu, Chu Chun ;
Willaime, F. .
COMPTES RENDUS PHYSIQUE, 2008, 9 (3-4) :335-342
[30]  
Gilbert MR, 2009, J NUCL MATER, V386-88, P36, DOI [10.1016/j.jnucmat.2008.12.055, 10.1016/j.jnucmat.2008.12,055]