Langevin model for real-time Brownian dynamics of interacting nanodefects in irradiated metals

被引:57
作者
Dudarev, S. L. [1 ]
Gilbert, M. R. [1 ,2 ]
Arakawa, K. [3 ,4 ,5 ]
Mori, H. [3 ]
Yao, Z. [2 ,6 ]
Jenkins, M. L. [2 ]
Derlet, P. M. [7 ]
机构
[1] Culham Ctr Fus Energy, EURATOM CCFE Fus Assoc, Abingdon OX14 3DB, Oxon, England
[2] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[3] Osaka Univ, Res Ctr Ultra High Voltage Electron Microscopy, Osaka 5670047, Japan
[4] Okinawa Inst Sci & Technol, Okinawa 9040411, Japan
[5] JST, CREST, Chiyoda Ku, Tokyo 1020075, Japan
[6] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada
[7] Paul Scherrer Inst, Condensed Matter Theory Grp, CH-5232 Villigen, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
GLISSILE INTERSTITIAL CLUSTERS; HEAVY-ION IRRADIATIONS; KINETIC MONTE-CARLO; DISLOCATION LOOPS; COMPUTER-SIMULATION; DAMAGE EVOLUTION; ELASTIC INTERACTION; FREQUENCY FACTORS; DEFECT CLUSTERS; THIN-FOILS;
D O I
10.1103/PhysRevB.81.224107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In situ real-time electron microscope observations of metals irradiated with ultrahigh-energy electrons or energetic ions show that the dynamics of microstructural evolution in these materials is strongly influenced by long-range elastic interactions between mobile nanoscale radiation defects. Treating long-range interactions is also necessary for modeling microstructures formed in ex situ high-dose-rate ion-beam irradiation experiments, and for interpolating the ion-beam irradiation data to the low-dose-rate limit characterizing the neutron irradiation environments of fission or fusion power plants. We show that simulations, performed using an algorithm where nanoscale radiation defects are treated as interacting Langevin particles, are able to match and explain the real-time dynamics of nanodefects observed in in situ electron microscope experiments.
引用
收藏
页数:15
相关论文
共 68 条
  • [1] Abramowitz M., 1972, Handbook on Mathematical Functions with Formulas, Graphs, and Mathematical Tables
  • [2] Changes in the burgers vector of perfect dislocation loops without contact with the external dislocations
    Arakawa, K
    Hatanaka, M
    Kuramoto, E
    Ono, K
    Mori, H
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (12) : 1 - 4
  • [3] Observation of the one-dimensional diffusion of nanometer-sized dislocation loops
    Arakawa, K.
    Ono, K.
    Isshiki, M.
    Mimura, K.
    Uchikoshi, M.
    Mori, H.
    [J]. SCIENCE, 2007, 318 (5852) : 956 - 959
  • [4] Arakawa K, 2008, AIP CONF PROC, V999, P66, DOI 10.1063/1.2918118
  • [5] Atomic-scale computer simulation of primary irradiation damage effects in metals
    Bacon, DJ
    Gao, F
    Osetsky, YN
    [J]. JOURNAL OF COMPUTER-AIDED MATERIALS DESIGN, 1999, 6 (2-3): : 225 - 237
  • [6] BARNES RS, 1963, J PHYS SOC JAPAN S3, V18, P305
  • [7] ELASTIC INTERACTION OF DISLOCATION LOOPS + POINT DEFFECTS
    BASTECKA, J
    KROUPA, F
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1964, 14 (06) : 443 - &
  • [8] Coffey W. T., 1996, LANGEVIN EQUATION
  • [9] Irradiation-induced defect production in elemental metals and semiconductors: A review of recent molecular dynamics studies
    delaRubia, TD
    [J]. ANNUAL REVIEW OF MATERIALS SCIENCE, 1996, 26 : 613 - 649
  • [10] Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals
    Derlet, P. M.
    Nguyen-Manh, D.
    Dudarev, S. L.
    [J]. PHYSICAL REVIEW B, 2007, 76 (05)