Effects of Energy Relaxation via Quantum Coupling Among Three-Dimensional Motion on the Tunneling Current of Graphene Field-Effect Transistors

被引:1
作者
Mao, Ling-Feng [1 ]
Ning, Huansheng [1 ]
Li, Xijun [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China
[2] Wenzhou Meta Opt Corp Ltd, Wenzhou 325000, Peoples R China
来源
NANOSCALE RESEARCH LETTERS | 2015年 / 10卷
基金
中国国家自然科学基金;
关键词
Graphene; Energy relaxation; Tunneling; ELECTRON-MOBILITY; LEAKAGE CURRENT; GATE STACKS; TEMPERATURE; DEVICE; MODEL;
D O I
10.1186/s11671-015-1039-4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report theoretical study of the effects of energy relaxation on the tunneling current through the oxide layer of a two-dimensional graphene field-effect transistor. In the channel, when three-dimensional electron thermal motion is considered in the Schrodinger equation, the gate leakage current at a given oxide field largely increases with the channel electric field, electron mobility, and energy relaxation time of electrons. Such an increase can be especially significant when the channel electric field is larger than 1 kV/cm. Numerical calculations show that the relative increment of the tunneling current through the gate oxide will decrease with increasing the thickness of oxide layer when the oxide is a few nanometers thick. This highlights that energy relaxation effect needs to be considered in modeling graphene transistors.
引用
收藏
页数:8
相关论文
共 32 条
  • [1] LANDAUER CONDUCTANCE FORMULA AND ITS GENERALIZATION TO FINITE VOLTAGES
    BAGWELL, PF
    ORLANDO, TP
    [J]. PHYSICAL REVIEW B, 1989, 40 (03): : 1456 - 1464
  • [2] Effective-mass approach for n-type semiconductor nanowire MOSFETs arbitrarily oriented
    Bescond, Marc
    Cavassilas, Nicolas
    Lannoo, Michel
    [J]. NANOTECHNOLOGY, 2007, 18 (25)
  • [3] Improved model for the stress-induced leakage current in thin silicon dioxide based on conduction-band electron and valence-band electron tunneling
    Chim, WK
    Lim, PS
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 91 (03) : 1577 - 1588
  • [4] Phase coherence and energy relaxation in epitaxial graphene under microwave radiation
    Eless, V.
    Yager, T.
    Spasov, S.
    Lara-Avila, S.
    Yakimova, R.
    Kubatkin, S.
    Janssen, T. J. B. M.
    Tzalenchuk, A.
    Antonov, V.
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (09)
  • [5] Fushinobu K., 2011, T JPN INST ELECTRON, V4, P31
  • [6] Doping graphene with metal contacts
    Giovannetti, G.
    Khomyakov, P. A.
    Brocks, G.
    Karpan, V. M.
    van den Brink, J.
    Kelly, P. J.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (02)
  • [7] An energy relaxation time model for device simulation
    Gonzalez, B
    Palankovski, V
    Kosina, H
    Hernandez, A
    Selberherr, S
    [J]. SOLID-STATE ELECTRONICS, 1999, 43 (09) : 1791 - 1795
  • [8] Hatakeyama T., 2011, T JAP I ELECT PACKAG, V4, P61
  • [9] CALCULATIONS OF RESONANT TUNNELING LEVELS ACROSS ARBITRARY POTENTIAL BARRIERS
    HSU, DS
    HSU, MZ
    TAN, CH
    WANG, YY
    [J]. JOURNAL OF APPLIED PHYSICS, 1992, 72 (10) : 4972 - 4974
  • [10] High carrier mobility in chemically modified graphene on an atomically flat high-resistive substrate
    Kotin, I. A.
    Antonova, I. V.
    Komonov, A. I.
    Seleznev, V. A.
    Soots, R. A.
    Prinz, V. Ya
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (28)