Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications

被引:416
作者
Luo, Yongsong [1 ,2 ,7 ]
Luo, Jingshan [1 ]
Jiang, Jian [1 ]
Zhou, Weiwei [1 ]
Yang, Huanping [1 ]
Qi, Xiaoying [3 ]
Zhang, Hua [3 ]
Fan, Hong Jin [1 ,2 ]
Yu, Denis Y. W. [2 ]
Li, Chang Ming [4 ,5 ]
Yu, Ting [1 ,2 ,6 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[2] Nanyang Technol Univ ERIAN, Energy Res Inst, Singapore 639789, Singapore
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[4] Southwest Univ, Inst Clean Energy & Adv Mat, Chongqing 400700, Peoples R China
[5] Nanyang Technol Univ, Sch Chem & Biomed Engn, Div Bioengn, Singapore 637371, Singapore
[6] Natl Univ Singapore, Fac Sci, Dept Phys, Singapore 117542, Singapore
[7] Xinyang Normal Univ, Sch Phys & Elect Engn, Xinyang 464000, Peoples R China
基金
新加坡国家研究基金会;
关键词
PERFORMANCE ANODE MATERIALS; ELECTROCHEMICAL PROPERTIES; RUTILE TIO2; ELECTRODE MATERIALS; LI INSERTION; XPS SPECTRA; STORAGE; NANOSTRUCTURES; ALPHA-FE2O3; COMPOSITE;
D O I
10.1039/c2ee03396h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Highly ordered TiO2@alpha-Fe2O3 core/shell arrays on carbon textiles (TFAs) have been fabricated by a stepwise, seed-assisted, hydrothermal approach and further investigated as the anode materials for Li-ion batteries (LIBs). This composite TFA anode exhibits superior high-rate capability and outstanding cycling performance. The specific capacity of the TFAs is much higher than that of pristine carbon textiles (CTs) and TiO2 nanorod arrays on carbon textiles (TRAs), indicating a positive synergistic effect of the material and structural hybridization on the enhancement of the electrochemical properties. This composite nanostructure not only provides large interfacial area for lithium insertion/extraction but should also be beneficial in reducing the diffusion pathways for electronic and ionic transport, leading to the improved capacity retention on cycling even at high discharge-charge rates. It is worth emphasizing that the CT substrates also present many potential virtues for LIBs as flexible electronic devices owing to the stretchable, lightweight and biodegradable properties. The fabrication strategy presented here is facile, cost-effective, and scalable, which opens new avenues for the design of optimal composite electrode materials for high performance LIBs.
引用
收藏
页码:6559 / 6566
页数:8
相关论文
共 61 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Characterization of the "native" surface thin film on pure polycrystalline iron: A high resolution XPS and TEM study [J].
Bhargava, G. ;
Gouzman, I. ;
Chun, C. M. ;
Ramanarayanan, T. A. ;
Bernasek, S. L. .
APPLIED SURFACE SCIENCE, 2007, 253 (09) :4322-4329
[4]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[5]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[6]   Reversible Storage of Lithium in a Rambutan-Like Tin-Carbon Electrode [J].
Deng, Da ;
Lee, Jim Yang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (09) :1660-1663
[7]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[8]   Nanographene-Constructed Carbon Nanofibers Grown on Graphene Sheets by Chemical Vapor Deposition: High-Performance Anode Materials for Lithium Ion Batteries [J].
Fan, Zhuang-Jun ;
Yan, Jun ;
Wei, Tong ;
Ning, Guo-Qing ;
Zhi, Lin-Jie ;
Liu, Jin-Cheng ;
Cao, Dian-Xue ;
Wang, Gui-Ling ;
Wei, Fei .
ACS NANO, 2011, 5 (04) :2787-2794
[9]   Recent advances in the research of polyanion-type cathode materials for Li-ion batteries [J].
Gong, Zhengliang ;
Yang, Yong .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3223-3242
[10]   General route to vertical ZnO nanowire arrays using textured ZnO seeds [J].
Greene, LE ;
Law, M ;
Tan, DH ;
Montano, M ;
Goldberger, J ;
Somorjai, G ;
Yang, PD .
NANO LETTERS, 2005, 5 (07) :1231-1236