Universality Theorems for Inscribed Polytopes and Delaunay Triangulations

被引:7
作者
Adiprasito, Karim A. [1 ]
Padrol, Arnau [2 ]
Theran, Louis [3 ,4 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, Jerusalem, Israel
[2] Free Univ Berlin, Inst Math, Berlin, Germany
[3] Aalto Univ, Aalto Sci Inst, Aalto, Finland
[4] Aalto Univ, Dept Comp Sci, Aalto, Finland
基金
欧洲研究理事会;
关键词
Inscribed polytope; Delaunay triangulation; Realization space; Universality theorem; ORIENTED MATROIDS; NEIGHBORLY POLYTOPES; COMBINATORIAL; GEOMETRY; SPACES;
D O I
10.1007/s00454-015-9714-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that every primary basic semi-algebraic set is homotopy equivalent to the set of inscribed realizations (up to Mobius transformation) of a polytope. If the semi-algebraic set is, moreover, open, it is, additionally, (up to homotopy) the retract of the realization space of some inscribed neighborly (and simplicial) polytope. We also show that all algebraic extensions of are needed to coordinatize inscribed polytopes. These statements show that inscribed polytopes exhibit the MnA << v universality phenomenon. Via stereographic projections, these theorems have a direct translation to universality theorems for Delaunay subdivisions. In particular, the realizability problem for Delaunay triangulations is polynomially equivalent to the existential theory of the reals.
引用
收藏
页码:412 / 431
页数:20
相关论文
共 42 条
[1]  
Adiprasito K. A., COMBINATORI IN PRESS
[2]   Many projectively unique polytopes [J].
Adiprasito, Karim A. ;
Ziegler, Guenter M. .
INVENTIONES MATHEMATICAE, 2015, 199 (03) :581-652
[3]  
[Anonymous], 1990, Portugal. Math.
[4]  
Bjorner A., 1999, ORIENTED MATROIDS, V46
[5]   ON COMBINATORIAL AND AFFINE AUTOMORPHISMS OF POLYTOPES [J].
BOKOWSKI, J ;
EWALD, G ;
KLEINSCHMIDT, P .
ISRAEL JOURNAL OF MATHEMATICS, 1984, 47 (2-3) :123-130
[6]  
Brgisser P., 1997, Algebraic Complexity Theory. Grundlehren der Mathematischen Wissenschaften, V315
[7]   VORONOI DIAGRAMS FROM CONVEX HULLS [J].
BROWN, KQ .
INFORMATION PROCESSING LETTERS, 1979, 9 (05) :223-228
[8]  
Edelsbrunner H., 2006, GEOMETRY TOPOLOGY ME
[9]  
Fortune S., 2004, HDB DISCRETE COMPUTA, V2nd, P513
[10]  
Futer D, 2011, CONTEMP MATH, V541, P159