Einstein four-manifolds with skew torsion

被引:3
作者
Ferreira, Ana Cristina [1 ]
机构
[1] Univ Minho, Ctr Matemat, P-4710057 Braga, Portugal
关键词
Four-manifolds; Skew torsion; Self-duality; SPACES;
D O I
10.1016/j.geomphys.2011.07.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a notion of Einstein manifolds with skew torsion on compact, orientable Riemannian manifolds of dimension four. We prove an analogue of the Hitchin-Thorpe inequality and study the case of equality. We use the link with self-duality to study the moduli space of 1-instantons on S-4 for a family of metrics defined by Bonneau. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2341 / 2351
页数:11
相关论文
共 23 条
[1]   Connections on naturally reductive spaces, their Dirac operator and homogeneous models in string theory [J].
Agricola, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 232 (03) :535-563
[2]  
[Anonymous], 2003, PhD thesis
[3]  
[Anonymous], THESIS U OXFORD
[4]  
[Anonymous], 2006, J. Symplectic Geom.
[5]  
[Anonymous], 2008, Einstein manifolds. Class. Math
[6]  
[Anonymous], MATH ANN
[7]  
[Anonymous], GEOMETRIE RIEMANNIEN
[8]   SELF-DUALITY IN 4-DIMENSIONAL RIEMANNIAN GEOMETRY [J].
ATIYAH, MF ;
HITCHIN, NJ ;
SINGER, IM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 362 (1711) :425-461
[9]   A LOCAL INDEX THEOREM FOR NON KAHLER-MANIFOLDS [J].
BISMUT, JM .
MATHEMATISCHE ANNALEN, 1989, 284 (04) :681-699
[10]   Compact Einstein-Weyl four-dimensional manifolds [J].
Bonneau, G .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (03) :1057-1068