Interface failure behavior of YSZ thermal barrier coatings during thermal shock

被引:33
作者
Zhang, Hongye [1 ]
Liu, Zhanwei [1 ]
Yang, Xiaobo [2 ]
Xie, Huimin [3 ]
机构
[1] Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China
[2] Beijing Mech Equipment Inst, Beijing 100854, Peoples R China
[3] Tsinghua Univ, Dept Engn Mech, AML, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal barrier coatings; Thermal shock; Real-time; In-situ; Interface failure; Strain evolution; DIGITAL IMAGE CORRELATION; ACOUSTIC-EMISSION; GROWN OXIDE; IN-SITU; DAMAGE EVOLUTION; PROGRESS UPDATE; BOND COAT; PART II; MECHANISMS; OXIDATION;
D O I
10.1016/j.jallcom.2018.11.311
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A high temperature interface deformation test system was built for failure analysis of YSZ thermal barrier coatings during 1100 degrees C thermal shock and thermal cycles. The strain distribution and evolution law near the thermal barrier coatings interface were in-situ real-time observed and measured by the developed high temperature interface deformation test system. After repeated thermal shock, crack initiation vertical to the interface will periodically come into being at the location of strain concentration area near the ceramic top coat surface. These cracks extend from the top coat surface to the interface, of which the period of crack agrees well with the theoretical analysis. EDS analysis indicate that the inter-diffusion lead to an influential tensile strain in the interface area and bond coat layer. Tensile tests indicate that with increase of thermal shock times, not only the bonding strength of the TBCs decreases, but also the tensile failure location change significantly. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:686 / 697
页数:12
相关论文
共 57 条
[1]   Multi-layered thermal barrier coatings on BMI polyimide matrix composite [J].
Abedi, H. R. ;
Salehi, M. ;
Shafyei, A. .
SURFACE & COATINGS TECHNOLOGY, 2018, 337 :104-116
[2]   Determining a critical strain for APS thermal barrier coatings under service relevant loading conditions [J].
Aleksanoglu, H. ;
Scholz, A. ;
Oechsner, M. ;
Berger, C. ;
Rudolphi, M. ;
Schuetze, M. ;
Stamm, W. .
INTERNATIONAL JOURNAL OF FATIGUE, 2013, 53 :40-48
[3]  
[Anonymous], 2004, Thin film materials: Stress, defect formation and surface evolution
[4]   Mixed-mode interfacial fracture toughness for thermal barrier coating [J].
Arai, M. ;
Kajima, Y. ;
Kishimoto, K. .
ENGINEERING FRACTURE MECHANICS, 2007, 74 (13) :2055-2069
[5]   Thermal shock testing of burner cans coated with a thick thermal barrier coating [J].
Bengtsson, P ;
Ericsson, T ;
Wigren, J .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 1998, 7 (03) :340-348
[6]  
Bennett T. D., 2005, J APPL PHYS, V97, P802
[7]   High-temperature delamination mechanisms of thermal barrier coatings: In-situ digital image correlation and finite element analyses [J].
Bumgardner, Clifton ;
Croom, Brendan ;
Li, Xiaodong .
ACTA MATERIALIA, 2017, 128 :54-63
[8]   A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part II: Life prediction model [J].
Busso, EP ;
Lin, J ;
Sakurai, S .
ACTA MATERIALIA, 2001, 49 (09) :1529-1536
[9]   Residual stress evolution regularity in thermal barrier coatings under thermal shock loading [J].
Chen, Ximin ;
Liu, Zhanwei ;
Yang, Yang .
THEORETICAL AND APPLIED MECHANICS LETTERS, 2014, 4 (02) :021009
[10]   Fracture behavior under mixed-mode loading of ceramic plasma-sprayed thermal barrier coatings at ambient and elevated temperatures [J].
Choi, SR ;
Zhu, D ;
Miller, RA .
ENGINEERING FRACTURE MECHANICS, 2005, 72 (13) :2144-2158