Kernel-VIO : An Optimization-based Tightly Coupled Indirect Visual-Inertial Odometry

被引:0
作者
Lin, Shuyue [1 ,2 ]
Zhang, Xuetao [1 ,2 ]
Liu, Yisha [3 ]
Chen, Yuqing [3 ]
Zhuang, Yan [1 ,2 ]
机构
[1] Dalian Univ Technol, Intelligent Robot Lab, Sch Artificial Intelligence, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
[3] Dalian Univ Technol, Sch Informat Sci & Technol, Dalian 116024, Peoples R China
来源
2021 27TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP) | 2021年
基金
中国国家自然科学基金;
关键词
KALMAN FILTER; VERSATILE; FUSION;
D O I
10.1109/M2VIP49856.2021.9665087
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an optimization-based tightly coupled Indirect Visual-Inertial Odometry (Kernel-VIO), which weights outliers with hybrid kernel functions. The novelty is that the hybrid weighting method based on kernel functions is firstly extended to the indirect-based VIO, which reduces the weight of outliers by dynamically weighting reprojection residual items, thereby the method suppresses adverse effects of outliers on the state estimator. Specifically, the proposed system processes the visual measurements and the IMU pre-integration in a tightly coupled way, next aligns the two information to complete the system initialization. Then, a nonlinear optimization framework is established by jointly minimizing the IMU pre-integration residuals, the reprojection residuals and prior information of sliding window marginalization to estimate the state of drones. The comparative experiments on the public dataset show that the accuracy and robustness of Kernel-VIO is better than the VINS-Mono without loop closure, and simulations demonstrate the effectiveness of the proposed Kernel-VIO.
引用
收藏
页数:6
相关论文
共 23 条
[1]   Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback [J].
Bloesch, Michael ;
Burri, Michael ;
Omari, Sammy ;
Hutter, Marco ;
Siegwart, Roland .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2017, 36 (10) :1053-1072
[2]  
Bloesch M, 2015, IEEE INT C INT ROBOT, P298, DOI 10.1109/IROS.2015.7353389
[3]  
Delmerico J, 2018, IEEE INT CONF ROBOT, P2502
[4]   Direct Sparse Odometry [J].
Engel, Jakob ;
Koltun, Vladlen ;
Cremers, Daniel .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (03) :611-625
[5]   On-Manifold Preintegration for Real-Time Visual-Inertial Odometry [J].
Forster, Christian ;
Carlone, Luca ;
Dellaert, Frank ;
Scaramuzza, Davide .
IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (01) :1-21
[6]   SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems [J].
Forster, Christian ;
Zhang, Zichao ;
Gassner, Michael ;
Werlberger, Manuel ;
Scaramuzza, Davide .
IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (02) :249-265
[7]   EKF-Based Visual Inertial Navigation Using Sliding Window Nonlinear Optimization [J].
He, Sejong ;
Cha, Jaehyuck ;
Park, Chan Gook .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (07) :2470-2479
[8]  
Huang GQ, 2019, IEEE INT CONF ROBOT, P9572, DOI [10.1109/ICRA.2019.8793604, 10.1109/icra.2019.8793604]
[9]   Information fusion in navigation systems via factor graph based incremental smoothing [J].
Indelman, Vadim ;
Williams, Stephen ;
Kaess, Michael ;
Dellaert, Frank .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2013, 61 (08) :721-738
[10]   DVIO: An Optimization-Based Tightly Coupled Direct Visual-Inertial Odometry [J].
Jiang, Jingqi ;
Yuan, Jing ;
Zhang, Xuetao ;
Zhang, Xuebo .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (11) :11212-11222