Robust generalized linear mixed models for small area estimation

被引:4
作者
Maiti, T [1 ]
机构
[1] Univ Nebraska, Dept Math & Stat, Lincoln, NE 68588 USA
关键词
hierarchical model; improper prior; Markov chain Monte Carlo; partially proper prior; posterior propriety; small area estimation; survey data;
D O I
10.1016/S0378-3758(00)00302-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Use of generalized linear model for small area estimation is relatively new for the survey statisticians. For a unified analysis of both discrete and continuous data, this paper introduces hierarchical Bayes generalized mixed linear models. Constant variance normal distribution is usually assumed for small area specific random effects. This paper uses, instead, a finite mixture of normals as a prior for the random effects. Such prior is believed to be more robust than a normal prior. There are difficulties with this model, however. First, standard reference priors for the parameters of the mixture components yield improper posteriors. Second, posterior analysis does not provide a direct estimate of the number of components to be used for the mixture distribution. Both improper and partially proper prior distributions are used and a general theorem is provided to ensure the propriety of posteriors. The hierarchical Bayes procedure is implemented via Markov Chain Monte Carlo integration techniques. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:225 / 238
页数:14
相关论文
共 50 条
[41]   Functional Mixed Effects Model for Small Area Estimation [J].
Maiti, Tapabrata ;
Sinha, Samiran ;
Zhong, Ping-Shou .
SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (03) :886-903
[42]   Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model [J].
Gonzalez-Manteiga, W. ;
Lombardia, M. J. ;
Molina, I. ;
Morales, D. ;
Santamaria, L. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (05) :2720-2733
[43]   Sampling from the posterior distribution in generalized linear mixed models [J].
Gamerman, D .
STATISTICS AND COMPUTING, 1997, 7 (01) :57-68
[44]   Sampling from the posterior distribution in generalized linear mixed models [J].
Dani Gamerman .
Statistics and Computing, 1997, 7 :57-68
[45]   Likelihood inference in generalized linear mixed measurement error models [J].
Torabi, Mahmoud .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 57 (01) :549-557
[46]   Robust Bayesian small area estimation based on quantile regression [J].
Fabrizi, Enrico ;
Salvati, Nicola ;
Trivisano, Carlo .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 145
[47]   Small area estimation of labour force indicators under unit-level multinomial mixed models [J].
Bugallo, Maria ;
Esteban, Maria Dolores ;
Hobza, Tomas ;
Morales, Domingo ;
Perez, Agustin .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2024, 188 (01) :241-270
[48]   Bayesian spatial models for small area estimation of proportions [J].
Moura, F. A. S. ;
Migon, H. S. .
STATISTICAL MODELLING, 2002, 2 (03) :183-201
[49]   Model-assisted estimators based on clustered coefficient linear regression models in small area estimation [J].
Wang, Xin ;
Huang, Xing .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2025, 95 (10) :2145-2162
[50]   Small Area Estimation via Nonparametric Mixed Effects Model [J].
Jeong, Seok-Oh ;
Shin, Key-Il .
KOREAN JOURNAL OF APPLIED STATISTICS, 2012, 25 (03) :457-464