Robust generalized linear mixed models for small area estimation

被引:4
作者
Maiti, T [1 ]
机构
[1] Univ Nebraska, Dept Math & Stat, Lincoln, NE 68588 USA
关键词
hierarchical model; improper prior; Markov chain Monte Carlo; partially proper prior; posterior propriety; small area estimation; survey data;
D O I
10.1016/S0378-3758(00)00302-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Use of generalized linear model for small area estimation is relatively new for the survey statisticians. For a unified analysis of both discrete and continuous data, this paper introduces hierarchical Bayes generalized mixed linear models. Constant variance normal distribution is usually assumed for small area specific random effects. This paper uses, instead, a finite mixture of normals as a prior for the random effects. Such prior is believed to be more robust than a normal prior. There are difficulties with this model, however. First, standard reference priors for the parameters of the mixture components yield improper posteriors. Second, posterior analysis does not provide a direct estimate of the number of components to be used for the mixture distribution. Both improper and partially proper prior distributions are used and a general theorem is provided to ensure the propriety of posteriors. The hierarchical Bayes procedure is implemented via Markov Chain Monte Carlo integration techniques. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:225 / 238
页数:14
相关论文
共 50 条
  • [21] Robust Small Area Estimation for Generalization
    Chan, Wendy
    Oh, Jimin
    [J]. JOURNAL OF EXPERIMENTAL EDUCATION, 2022, 91 (03) : 539 - 556
  • [22] Spatial robust small area estimation
    Schmid, Timo
    Muennich, Ralf T.
    [J]. STATISTICAL PAPERS, 2014, 55 (03) : 653 - 670
  • [23] Robust Small Area Estimation: An Overview
    Jiang, Jiming
    Rao, J. Sunil
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 7, 2020, 2020, 7 : 337 - 360
  • [24] Spatial robust small area estimation
    Timo Schmid
    Ralf T. Münnich
    [J]. Statistical Papers, 2014, 55 : 653 - 670
  • [25] Simultaneous inference for linear mixed model parameters with an application to small area estimation
    Reluga, Katarzyna
    Lombardia, Maria-Jose
    Sperlich, Stefan
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2023, 91 (02) : 193 - 217
  • [26] SMALL AREA ESTIMATION USING A SPATIO-TEMPORAL LINEAR MIXED MODEL
    Pereira, Luis N.
    Coelho, Pedro S.
    [J]. REVSTAT-STATISTICAL JOURNAL, 2012, 10 (03) : 285 - 308
  • [27] Small area estimation with partially linear mixed-t model with measurement error
    Hosseini, Seyede Elahe
    Shahsavani, Davood
    Rabiei, Mohammad Reza
    Arashi, Mohammad
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 446
  • [28] Standard errors of prediction in generalized linear mixed models
    Booth, JG
    Hobert, JP
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) : 262 - 272
  • [29] GENERALIZED FIDUCIAL INFERENCE FOR NORMAL LINEAR MIXED MODELS
    Cisewski, Jessi
    Hannig, Jan
    [J]. ANNALS OF STATISTICS, 2012, 40 (04) : 2102 - 2127
  • [30] General design Bayesian generalized linear mixed models
    Zhao, Y.
    Staudenmayer, J.
    Coull, B. A.
    Wand, M. P.
    [J]. STATISTICAL SCIENCE, 2006, 21 (01) : 35 - 51