Integration of Diffusion-Weighted MRI Data and a Simple Mathematical Model to Predict Breast Tumor Cellularity During Neoadjuvant Chemotherapy

被引:37
作者
Atuegwu, Nkiruka C. [2 ]
Arlinghaus, Lori R. [2 ]
Li, Xia [2 ]
BrianWelch, E. [2 ]
Chakravarthy, Bapsi A. [3 ,4 ]
Gore, John C. [2 ,3 ,5 ,6 ,7 ]
Yankeelov, Thomas E. [1 ,2 ,3 ,5 ,6 ,8 ]
机构
[1] Vanderbilt Univ, Med Ctr, Inst Imaging Sci, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Nashville, TN 37232 USA
[4] Vanderbilt Univ, Dept Radiat Oncol, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[8] Vanderbilt Univ, Dept Canc Biol, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
diffusion MRI; cellularity; tumor growth; mathematical model; breast cancer; GLIOMA GROWTH; FRACTION; CANCER; IMAGES;
D O I
10.1002/mrm.23203
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Diffusion-weighted magnetic resonance imaging data obtained early in the course of therapy can be used to estimate tumor proliferation rates, and the estimated rates can be used to predict tumor cellularity at the conclusion of therapy. Six patients underwent diffusion-weighted magnetic resonance imaging immediately before, after one cycle, and after all cycles of neoadjuvant chemotherapy. Apparent diffusion coefficient values were calculated for each voxel and for a whole tumor region of interest. Proliferation rates were estimated using the apparent diffusion coefficient data from the first two time points and then used with the logistic model of tumor growth to predict cellularity after therapy. The predicted number of tumor cells was then correlated to the corresponding experimental data. Pearson's correlation coefficient for the region of interest analysis yielded 0.95 (P = 0.004), and, after applying a 3 3 3 mean filter to the apparent diffusion coefficient data, the voxel-by-voxel analysis yielded a Pearson correlation coefficient of 0.70 +/- 0.10 (P < 0.05). Magn Reson Med 66:1689-1696, 2011. (C) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:1689 / 1696
页数:8
相关论文
共 23 条
  • [1] Effects of cell volume fraction changes on apparent diffusion in human cells
    Anderson, AW
    Xie, J
    Pizzonia, J
    Bronen, RA
    Spencer, DD
    Gore, JC
    [J]. MAGNETIC RESONANCE IMAGING, 2000, 18 (06) : 689 - 695
  • [2] The integration of quantitative multi-modality imaging data into mathematical models of tumors
    Atuegwu, Nkiruka C.
    Gore, John C.
    Yankeelov, Thomas E.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (09) : 2429 - 2449
  • [3] Byrne HM, 2003, MATH COMP BIOL SER, P75
  • [4] Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors
    Chenevert, TL
    Stegman, LD
    Taylor, JMG
    Robertson, PL
    Greenberg, HS
    Rehemtulla, A
    Ross, BD
    [J]. JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2000, 92 (24): : 2029 - 2036
  • [5] Spatially Quantifying Microscopic Tumor Invasion and Proliferation Using a Voxel-Wise Solution to a Glioma Growth Model and Serial Diffusion MRI
    Ellingson, Benjamin M.
    LaViolette, Peter S.
    Rand, Scott D.
    Malkin, Mark G.
    Connelly, Jennifer M.
    Mueller, Wade M.
    Prost, Robert W.
    Schmainda, Kathleen M.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (04) : 1132 - 1144
  • [6] Effect of preoperative chemotherapy on the outcome of women with operable breast cancer
    Fisher, B
    Bryant, J
    Wolmark, N
    Mamounas, E
    Brown, A
    Fisher, ER
    Wickerham, DL
    Begovic, M
    DeCillis, A
    Robidoux, A
    Margolese, RG
    Cruz, AB
    Hoehn, JL
    Lees, AW
    Dimitrov, NV
    Bear, HD
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 1998, 16 (08) : 2672 - 2685
  • [7] Hayashida Y, 2006, AM J NEURORADIOL, V27, P1419
  • [8] An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects
    Hogea, Cosmina
    Davatzikos, Christos
    Biros, George
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 56 (06) : 793 - 825
  • [9] Hogea C, 2007, LECT NOTES COMPUT SC, V4791, P642
  • [10] Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging
    Jbabdi, S
    Mandonnet, E
    Duffau, H
    Capelle, L
    Swanson, KR
    Pélégrini-Issac, M
    Guillevin, R
    Benali, H
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2005, 54 (03) : 616 - 624