Polychromatic colorings of complete graphs with respect to 1-, 2-factors and Hamiltonian cycles

被引:4
作者
Axenovich, Maria [1 ]
Goldwasser, John [2 ]
Hansen, Ryan [2 ]
Lidicky, Bernard [3 ]
Martin, Ryan R. [3 ]
Offner, David [4 ]
Talbot, John [5 ]
Young, Michael [3 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, Karlsruhe, Germany
[2] West Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[3] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[4] Westminster Coll, Dept Math & Comp Sci, New Wilmington, PA 16172 USA
[5] UCL, Dept Math, London, England
基金
美国国家科学基金会;
关键词
1-factor; 2-factor; hamiltonian cycle; polychromatic coloring; DECOMPOSITION; HYPERCUBE;
D O I
10.1002/jgt.22180
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If G is a graph and H is a set of subgraphs of G, then an edge-coloring of G is called H-polychromatic if every graph from H gets all colors present in G. The H-polychromatic number of G, denoted poly H(G), is the largest number of colors such that G has an H-polychromatic coloring. In this article, poly H(G) is determined exactly when G is a complete graph and H is the family of all 1-factors. In addition polyH(G) is found up to an additive constant term when G is a complete graph and H is the family of all 2-factors, or the family of all Hamiltonian cycles.
引用
收藏
页码:660 / 671
页数:12
相关论文
共 12 条
[1]  
Ackerman E, 2016, LEIBNIZ INT P INFORM
[2]   Turan's theorem in the hypercube [J].
Alon, Noga ;
Krech, Anja ;
Szabo, Tibor .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) :66-72
[3]   Polychromatic Colorings of Plane Graphs [J].
Alon, Noga ;
Berke, Robert ;
Buchin, Kevin ;
Buchin, Maike ;
Csorba, Peter ;
Shannigrahi, Saswata ;
Speckmann, Bettina ;
Zumstein, Philipp .
DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (03) :421-442
[4]  
Bialostocki A., 1983, ARS COMBINATORIA, V16, P39
[5]   COVER-DECOMPOSITION AND POLYCHROMATIC NUMBERS [J].
Bollobas, Bela ;
Pritchard, David ;
Rothvoss, Thomas ;
Scott, Alex .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) :240-256
[6]   Split and balanced colorings of complete graphs [J].
Erdos, P ;
Gyárfás, A .
DISCRETE MATHEMATICS, 1999, 200 (1-3) :79-86
[7]  
Goddard W., ARXIV160909684
[8]  
Goldwasser J., 2017, POLYCHROMATIC UNPUB
[9]  
Goldwasser J., 2016, ARXIV160305865
[10]  
Gyarfas A., ARXIV13071768V1