Delay equations with rapidly oscillating stable periodic solutions

被引:23
作者
Stoffer, Daniel [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
delay differential equations; rapidly oscillating solutions; stable periodic solutions;
D O I
10.1007/s10884-006-9068-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove analytically that there exist delay equations admitting rapidly oscillating stable periodic solutions. Previous results were obtained with the aid of computers, only for particular feedback functions. Our proofs work for stiff equations with several classes of feedback functions. Moreover, we prove that for negative feedback there exists a class of feedback functions such that the larger the stiffness parameter is, the more stable rapidly oscillating periodic solutions there are. There are stable periodic solutions with arbitrarily many zeros per unit time interval if the stiffness parameter is chosen sufficiently large.
引用
收藏
页码:201 / 238
页数:38
相关论文
共 10 条
[1]  
Aschwanden A, 2006, DISCRETE CONT DYN-A, V14, P721
[2]  
Golomb S. W., 1967, Shift Register Sequences
[3]  
Ivanov A. F., 1999, DIFFERENTIAL INTEGRA, V12, P811
[4]  
Krisztin T., 1999, FIELDS I MONOGRAPHS, V11
[5]  
KRISZTIN T, 2001, J DYN DIFFER EQU, V13, P1
[6]  
MALLETPARET J, 1994, RAPID OSCILLATIONS A
[7]  
RUPFLIN M, 2006, THESIS ETH ZURICH
[8]  
RUPFLIN M, HETEROCLINIC CONNECT
[9]  
SCHULZEHALBERG A, 2003, MITT MATH SEM GIESSE, V252, P1
[10]  
Sloane N., 1995, The encyclopedia of integer sequences