Sensitive, reliable and robust circRNA detection from RNA-seq with CirComPara2

被引:33
|
作者
Gaffo, Enrico [1 ]
Buratin, Alessia [2 ]
Dal Molin, Anna [3 ]
Bortoluzzi, Stefania [4 ]
机构
[1] Univ Padua, Dept Mol Med, Computat Genom Lab, Padua, Italy
[2] Univ Padua, Biosci Curriculum Genet Genom & Bioinformat, Padua, Italy
[3] Dept Mol Med, Computat Genom Lab, Padua, Italy
[4] Univ Padua, Dept Mol Med, Padua, Italy
关键词
circRNAs; bioinformatics; computational pipeline; RNA-seq; CIRCULAR RNAS; QUANTIFICATION; EXPRESSION; IDENTIFICATION; BIOGENESIS; LANDSCAPE; ALIGNMENT;
D O I
10.1093/bib/bbab418
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Circular RNAs (circRNAs) are a large class of covalently closed RNA molecules originating by a process called back-splicing. CircRNAs are emerging as functional RNAs involved in the regulation of biological processes as well as in disease and cancer mechanisms. Current computational methods for circRNA identification from RNA-seq experiments are characterized by low discovery rates and performance dependent on the analysed data set. We developed CirComPara2 (https://github.com/e gaffo/CirComPara2), a new automated computational pipeline for circRNA discovery and quantification, which consistently achieves high recall rates without losing precision by combining multiple circRNA detection methods. In our benchmark analysis, CirComPara2 outperformed state-of-the-art circRNA discovery tools and proved to be a reliable and robust method for comprehensive transcriptome characterization.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Acfs: accurate circRNA identification and quantification from RNA-Seq data
    You, Xintian
    Conrad, Tim O. F.
    SCIENTIFIC REPORTS, 2016, 6
  • [2] Comprehensive comparison of two types of algorithm for circRNA detection from short-read RNA-Seq
    Liu, Hongfei
    Akhatayeva, Zhanerke
    Pan, Chuanying
    Liao, Mingzhi
    Lan, Xianyong
    BIOINFORMATICS, 2022, 38 (11) : 3037 - 3043
  • [3] CIRCexplorer pipelines for circRNA annotation and quantification from non-polyadenylated RNA-seq datasets
    Ma, Xu-Kai
    Xue, Wei
    Chen, Ling-Ling
    Yang, Li
    METHODS, 2021, 196 : 3 - 10
  • [4] Reliable Identification of Genomic Variants from RNA-Seq Data
    Piskol, Robert
    Ramaswami, Gokul
    Li, Jin Billy
    AMERICAN JOURNAL OF HUMAN GENETICS, 2013, 93 (04) : 641 - 651
  • [5] SQUID: transcriptomic structural variation detection from RNA-seq
    Ma, Cong
    Shao, Mingfu
    Kingsford, Carl
    GENOME BIOLOGY, 2018, 19
  • [6] Detection of generic differential RNA processing events from RNA-seq data
    Tran, Van Du T.
    Souiai, Oussema
    Romero-Barrios, Natali
    Crespi, Martin
    Gautheret, Daniel
    RNA BIOLOGY, 2016, 13 (01) : 59 - 67
  • [7] RNA-seq data science: From raw data to effective interpretation
    Deshpande, Dhrithi
    Chhugani, Karishma
    Chang, Yutong
    Karlsberg, Aaron
    Loeffler, Caitlin
    Zhang, Jinyang
    Muszynska, Agata
    Munteanu, Viorel
    Yang, Harry
    Rotman, Jeremy
    Tao, Laura
    Balliu, Brunilda
    Tseng, Elizabeth
    Eskin, Eleazar
    Zhao, Fangqing
    Mohammadi, Pejman
    Labaj, Pawel P.
    Mangul, Serghei
    FRONTIERS IN GENETICS, 2023, 14
  • [8] Highly sensitive and ultrafast read mapping for RNA-seq analysis
    Medina, I.
    Tarraga, J.
    Martinez, H.
    Barrachina, S.
    Castillo, M. I.
    Paschall, J.
    Salavert-Torres, J.
    Blanquer-Espert, I.
    Hernandez-Garcia, V.
    Quintana-Orti, E. S.
    Dopazo, J.
    DNA RESEARCH, 2016, 23 (02) : 93 - 100
  • [9] TACO produces robust multisample transcriptome assemblies from RNA-seq
    Niknafs, Yashar S.
    Pandian, Balaji
    Iyer, Hariharan K.
    Chinnaiyan, Arul M.
    Iyer, Matthew K.
    NATURE METHODS, 2017, 14 (01) : 68 - 70
  • [10] Impact of RNA degradation on fusion detection by RNA-seq
    Davila, Jaime I.
    Fadra, Numrah M.
    Wang, Xiaoke
    McDonald, Amber M.
    Nair, Asha A.
    Crusan, Barbara R.
    Wu, Xianglin
    Blommel, Joseph H.
    Jen, Jin
    Rumilla, Kandelaria M.
    Jenkins, Robert B.
    Aypar, Umut
    Klee, Eric W.
    Kipp, Benjamin R.
    Halling, Kevin C.
    BMC GENOMICS, 2016, 17