Global attractors for a nonlinear one-dimensional compressible viscous micropolar fluid model

被引:6
作者
Huang, Lan [1 ]
Yang, Xin-Guang [2 ]
Lu, Yongjin [3 ]
Wang, Taige [4 ]
机构
[1] North China Univ Water Resources & Elect Power, Coll Math & Stat, Zhengzhou 450011, Henan, Peoples R China
[2] Henan Normal Univ, Dept Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[3] Virginia State Univ, Dept Math & Econ, Petersburg, VA 23806 USA
[4] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2019年 / 70卷 / 02期
基金
美国国家科学基金会;
关键词
Micropolar fluids; Global attractors; Semigroups; NONHOMOGENEOUS BOUNDARY-CONDITIONS; HEAT CONVECTION PROBLEM; PULLBACK ATTRACTOR; EXISTENCE; FLOWS; BEHAVIOR;
D O I
10.1007/s00033-019-1083-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the dynamical behavior of solutions of constitutive systems for 1D compressible viscous and heat-conducting micropolar fluids. With proper constraints on initial data, we prove the existence of global attractors in generalized Sobolev spaces H(1) and H(2). These attractors are unique in corresponding phase spaces.
引用
收藏
页数:20
相关论文
共 42 条
[1]  
ANTONTSEV SN, 1990, BOUNDARY VALUE PROBL
[2]   On micropolar fluids in the theory of lubrication. Rigorous derivation of an analogue of the Reynolds equation [J].
Bayada, G ;
Lukaszewicz, G .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1996, 34 (13) :1477-1490
[3]   Attractor dimension estimate for plane shear flow of micropolar fluid with free boundary [J].
Boukrouche, M ;
Lukaszewicz, G .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (14) :1673-1694
[4]   Pullback attractor for non-homogeneous micropolar fluid flows in non-smooth domains [J].
Chen, Guang-Xia .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) :3018-3027
[5]   Pullback attractors of non-autonomous micropolar fluid flows [J].
Chen, Jianwen ;
Dong, Bo-Qing ;
Chen, Zhi-Min .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) :1384-1394
[6]   Uniform attractors of non-homogeneous micropolar fluid flows in non-smooth domains [J].
Chen, Jianwen ;
Chen, Zhi-Min ;
Dong, Bo-Qing .
NONLINEARITY, 2007, 20 (07) :1619-1635
[7]   Existence of H2-global attractors of two-dimensional micropolar fluid flows [J].
Chen, Jianwen ;
Chen, Zhi-Min ;
Dong, Bo-Qing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) :512-522
[8]   Global attractors of two-dimensional micropolar fluid flows in some unbounded domains [J].
Dong, Bo-Qing ;
Chen, Zhi-Min .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) :610-620
[9]   Three-dimensional flow of a compressible viscous micropolar fluid with cylindrical symmetry: a global existence theorem [J].
Drazic, Ivan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (13) :4785-4801
[10]   3-D flow of a compressible viscous micropolar fluid with spherical symmetry: Large time behavior of the solution [J].
Drazic, Ivan ;
Mujakovic, Nermina .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (01) :545-568