Identities and central polynomials for real graded division algebras

被引:1
作者
Diniz, Diogo [1 ]
Fidelis, Claudemir [1 ]
Mota, Sergio [2 ]
机构
[1] Univ Fed Campia Grande, Unidade Acad Matemat, BR-58429970 Campia Grande, PB, Brazil
[2] Univ Estadual Santa Cruz, Rodovia Ilheus Itahuna,Km 16, BR-45662900 Ilheus, BA, Brazil
关键词
Graded algebra; simple real algebra; graded polynomial identities; GRADINGS;
D O I
10.1142/S0218196717500436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a finite dimensional simple real algebra with a division grading by a finite abelian group G. In this paper, we provide a finite basis for the T-G-ideal of graded polynomial identities for A and a finite basis for the T-G-space of graded central polynomials for A.
引用
收藏
页码:935 / 952
页数:18
相关论文
共 50 条
[21]   On nonassociative graded-simple algebras over the field of real numbers [J].
Bahturin, Yuri ;
Kochetov, Mikhail .
TENSOR CATEGORIES AND HOPF ALGEBRAS, 2019, 728 :25-48
[22]   Graded identities and isomorphisms on algebras of upper block-triangular matrices [J].
Ramos, Alex ;
Diniz, Diogo .
JOURNAL OF ALGEBRA, 2019, 523 :201-216
[23]   On the graded identities for elementary gradings in matrix algebras over infinite fields [J].
Pereira da Silva e Silva, Diogo Diniz .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (05) :1530-1537
[24]   Classification of division gradings on finite-dimensional simple real algebras [J].
Rodrigo-Escudero, Adrian .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 493 :164-182
[25]   MARTINDALE ALGEBRAS OF QUOTIENTS OF GRADED ALGEBRAS [J].
Bierwirth, H. ;
Martin Gonzalez, C. ;
Sanchez Ortega, J. ;
Siles Molina, M. .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (02) :829-846
[26]   Block-triangular matrix algebras and factorable ideals of graded polynomial identities [J].
Di Vincenzo, OM ;
La Scala, R .
JOURNAL OF ALGEBRA, 2004, 279 (01) :260-279
[27]   On extended graded Poisson algebras [J].
Calderon Martin, Antonio J. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (04) :879-892
[28]   On the factorability of polynomial identities of upper block triangular matrix algebras graded by cyclic groups [J].
Di Vincenzo, Onofrio Mario ;
da Silva Pinto, Marcos Antonio ;
Tomaz da Silva, Viviane Ribeiro .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 601 :311-337
[29]   Graded Lie-Rinehart algebras [J].
Barreiro, Elisabete ;
Calderon, A. J. ;
Navarro, Rosa M. ;
Sanchez, Jose M. .
JOURNAL OF GEOMETRY AND PHYSICS, 2023, 191
[30]   Flexibly Graded Monads and Graded Algebras [J].
McDermott, Dylan ;
Uustalu, Tarmo .
MATHEMATICS OF PROGRAM CONSTRUCTION (MPC 2022, 2022, 13544 :102-128