Solving Some Quadratic Diophantine Equations with Clifford Algebra
被引:1
作者:
Aragon-Gonzalez, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Metropolitana, Programa Desarrollo Profes Automatizac, Colonia Reynosa Tamaulip 02200, DF, MexicoUniv Autonoma Metropolitana, Programa Desarrollo Profes Automatizac, Colonia Reynosa Tamaulip 02200, DF, Mexico
Aragon-Gonzalez, G.
[1
]
Aragon, J. L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oxford, Math Inst, Ctr Math Biol, Oxford OX1 3LB, England
Univ Nacl Autonoma Mexico, Ctr Fis Aplicada & Tecnol Avanzada, Queretaro 76000, MexicoUniv Autonoma Metropolitana, Programa Desarrollo Profes Automatizac, Colonia Reynosa Tamaulip 02200, DF, Mexico
Aragon, J. L.
[2
,3
]
Rodriguez-Andrade, M. A.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Politecn Nacl, Dept Matemat, Escuela Super Fis & Matemat, Unidad Profes Adolfo Lopez Mateos, Mexico City 07300, DF, Mexico
CINVESTAV IPN, Dept Matemat Educ, Colonia San Pedro Zacate 07360, DF, MexicoUniv Autonoma Metropolitana, Programa Desarrollo Profes Automatizac, Colonia Reynosa Tamaulip 02200, DF, Mexico
Rodriguez-Andrade, M. A.
[4
,5
]
机构:
[1] Univ Autonoma Metropolitana, Programa Desarrollo Profes Automatizac, Colonia Reynosa Tamaulip 02200, DF, Mexico
[2] Univ Oxford, Math Inst, Ctr Math Biol, Oxford OX1 3LB, England
In this work, the equivalence class representatives of integer solutions of the Diophantine equation of the type a(1)x(1)(2) + ... + a(p)x(p)(2) = a(p+1)x(p)(+1)(2) + ... + a(p+q)x(p)(+q)(2) + a(1)x(n)(+1)(2) (ai > 0,i = 1 ,..., p + q, x(n+1) not equal 0) are found using simple reflections of orthogonal vectors, manipulated using the Clifford algebra over orthogonal spaces R(p,q). These solutions are obtained from the application of a useful Lemma: given two different non-zero vectors of the same norm, we can map one onto the other, or its negative, by means of a simple reflection. With this Lemma, we extend and improve a previous work [1] concerning generalized Pythagorean numbers, which now can be obtained as a Corollary. We also show that our technique is promising for solving others Diophantine equations.