Solving Some Quadratic Diophantine Equations with Clifford Algebra

被引:1
作者
Aragon-Gonzalez, G. [1 ]
Aragon, J. L. [2 ,3 ]
Rodriguez-Andrade, M. A. [4 ,5 ]
机构
[1] Univ Autonoma Metropolitana, Programa Desarrollo Profes Automatizac, Colonia Reynosa Tamaulip 02200, DF, Mexico
[2] Univ Oxford, Math Inst, Ctr Math Biol, Oxford OX1 3LB, England
[3] Univ Nacl Autonoma Mexico, Ctr Fis Aplicada & Tecnol Avanzada, Queretaro 76000, Mexico
[4] Inst Politecn Nacl, Dept Matemat, Escuela Super Fis & Matemat, Unidad Profes Adolfo Lopez Mateos, Mexico City 07300, DF, Mexico
[5] CINVESTAV IPN, Dept Matemat Educ, Colonia San Pedro Zacate 07360, DF, Mexico
关键词
Clifford algebras; Diophantine equations;
D O I
10.1007/s00006-010-0247-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the equivalence class representatives of integer solutions of the Diophantine equation of the type a(1)x(1)(2) + ... + a(p)x(p)(2) = a(p+1)x(p)(+1)(2) + ... + a(p+q)x(p)(+q)(2) + a(1)x(n)(+1)(2) (ai > 0,i = 1 ,..., p + q, x(n+1) not equal 0) are found using simple reflections of orthogonal vectors, manipulated using the Clifford algebra over orthogonal spaces R(p,q). These solutions are obtained from the application of a useful Lemma: given two different non-zero vectors of the same norm, we can map one onto the other, or its negative, by means of a simple reflection. With this Lemma, we extend and improve a previous work [1] concerning generalized Pythagorean numbers, which now can be obtained as a Corollary. We also show that our technique is promising for solving others Diophantine equations.
引用
收藏
页码:259 / 272
页数:14
相关论文
共 6 条
  • [1] The decomposition of an orthogonal transformation as a product of reflections -: art. no. 013509
    Aragón-González, G
    Aragón, JL
    Rodríguez-Andrade, MA
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (01)
  • [2] Artin E., 1957, Geometric algebra, DOI 10.1002/9781118164518
  • [3] Chevalley C.C., 1996, ALGEBRAIC THEORY SPI
  • [4] HESTENES D, 1985, CLIFFORD ALGEBRA GEO
  • [5] Porteous I, 1995, CLIFFORD ALGEBRAS CL
  • [6] Riesz M., 1993, CLIFFORD NUMBERS SPI