Forward modeling of ocean-bottom cable data and wave-mode separation in fluid-solid elastic media with irregular seabed

被引:5
作者
Qu Ying-Ming [1 ,2 ]
Sun Jun-Zhi [1 ]
Li Zhen-Chun [1 ]
Huang Jian-Ping [1 ]
Li Hai-Peng [1 ]
Sun Wen-Zhi [1 ]
机构
[1] China Univ Petr, Sch Geosci, Dept Geophys, Qingdao 266580, Peoples R China
[2] SINOPEC Key Lab Geophys, Nanjing 211103, Jiangsu, Peoples R China
关键词
Irregular seabed; fluid-solid elastic media; ocean bottom cable data; P-and S-wave separation; curvilinear coordinates; S-WAVES; HETEROGENEOUS MEDIA; FORM INVERSION; P-WAVES; PROPAGATION; FIELD; SIMULATION; COORDINATE; INTERFACES; 2D;
D O I
10.1007/s11770-018-0699-0
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid-solid media cannot be simulated by a single wave equation. In addition, when the seabed interface is irregular, traditional finite-difference schemes cannot simulate the seismic wave propagation across the irregular seabed interface. Therefore, an acoustic-elastic forward modeling and vector-based P- and S-wave separation method is proposed. In this method, we divide the fluid-solid elastic media with irregular interface into orthogonal grids and map the irregular interface in the Cartesian coordinates system into a horizontal interface in the curvilinear coordinates system of the computational domain using coordinates transformation. The acoustic and elastic wave equations in the curvilinear coordinates system are applied to the fluid and solid medium, respectively. At the irregular interface, the two equations are combined into an acoustic-elastic equation in the curvilinear coordinates system. We next introduce a full staggered-grid scheme to improve the stability of the numerical simulation. Thus, separate P- and S-wave equations in the curvilinear coordinates system are derived to realize the P- and S-wave separation method.
引用
收藏
页码:432 / 447
页数:16
相关论文
共 42 条
[1]  
Aki K., 2002, QUANTITATIVE SEISMOL
[2]   A comparison of the dispersion relations for anisotropic elastodynamic finite-difference grids [J].
Bernth, Henrik ;
Chapman, Chris .
GEOPHYSICS, 2011, 76 (03) :WA43-WA50
[3]   The physics and simulation of wave propagation at the ocean bottom [J].
Carcione, JM ;
Helle, HB .
GEOPHYSICS, 2004, 69 (03) :825-839
[4]   Two-dimensional waveform inversion of multi-component data in acoustic-elastic coupled media [J].
Choi, Yunseok ;
Min, Dong-Joo ;
Shin, Changsoo .
GEOPHYSICAL PROSPECTING, 2008, 56 (06) :863-881
[5]   Finite difference predictions of P-SV wave propagation inside submerged solids .1. Liquid-solid interface conditions [J].
Dahake, G ;
Gracewski, SM .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 102 (04) :2125-2137
[6]  
Dai Y. J., 2005, RES APPL WAVE FIELD
[7]   SEPARATION OF P-WAVES AND S-WAVES [J].
DANKBAAR, JWM .
GEOPHYSICAL PROSPECTING, 1985, 33 (07) :970-986
[8]   A PLANE-WAVE DECOMPOSITION FOR ELASTIC WAVE FIELDS APPLIED TO THE SEPARATION OF P-WAVES AND S-WAVES IN VECTOR SEISMIC DATA [J].
DEVANEY, AJ ;
ORISTAGLIO, ML .
GEOPHYSICS, 1986, 51 (02) :419-423
[9]   True-amplitude wavefield separation using staggered-grid interpolation in the wavenumber domain [J].
Du Qi-Zhen ;
Zhang Ming-Qiang ;
Chen Xiao-Ran ;
Gong Xu-Fei ;
Guo Cheng-Feng .
APPLIED GEOPHYSICS, 2014, 11 (04) :437-446
[10]   Efficient finite-difference modelling of seismic waves using locally adjustable time steps [J].
Falk, J ;
Tessmer, E ;
Gajewski, D .
GEOPHYSICAL PROSPECTING, 1998, 46 (06) :603-616