Center conditions in a switching Bautin system

被引:47
作者
Tian, Yun [1 ]
Yu, Pei [1 ]
机构
[1] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Switching system; Bautin switching system; Lyapunov constant; Center; Bifurcation; Limit cycle; HOPF-BIFURCATION; LIMIT-CYCLES; PIECEWISE-SMOOTH; LIENARD SYSTEMS; PLANAR;
D O I
10.1016/j.jde.2015.02.044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new method with an efficient algorithm is developed for computing the Lyapunov constants of planar switching systems, and then applied to study bifurcation of limit cycles in a switching Bautin system. A complete classification on the conditions of a singular point being a center in this Bautin system is obtained. Further, an example of switching systems is constructed to show the existence of 10 small-amplitude limit cycles bifurcating from a center. This is a new lower bound of the maximal number of small-amplitude limit cycles obtained in quadratic switching systems near a singular point. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1203 / 1226
页数:24
相关论文
共 24 条
[11]   Center-focus problem for discontinuous planar differential equations [J].
Gasull, A ;
Torregrosa, J .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (07) :1755-1765
[12]  
Han M., 2013, Bifurcation Theory of Limit Cycles
[13]   On Hopf bifurcation in non-smooth planar systems [J].
Han, Maoan ;
Zhang, Weinian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (09) :2399-2416
[14]  
Ibrahim RA, 1994, Applied Mechanics Reviews, V47, P227, DOI [DOI 10.1115/1.3111080, 10.1115/1.3111080]
[15]  
Kaplan A., 2001, PHYS REV LETT, V87
[16]   A quantum Newton's cradle [J].
Kinoshita, T ;
Wenger, T ;
Weiss, DS .
NATURE, 2006, 440 (7086) :900-903
[17]  
Kunze M., 2000, Non-smooth Dynamical Systems
[18]   HOPF BIFURCATION FOR NONSMOOTH LIENARD SYSTEMS [J].
Liu, Xia ;
Han, Maoan .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (07) :2401-2415
[19]   Limit cycles for discontinuous quadratic differential systems with two zones [J].
Llibre, Jaume ;
Mereu, Ana C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 413 (02) :763-775
[20]   BORDER-COLLISION BIFURCATIONS INCLUDING PERIOD 2 TO PERIOD 3 FOR PIECEWISE SMOOTH SYSTEMS [J].
NUSSE, HE ;
YORKE, JA .
PHYSICA D-NONLINEAR PHENOMENA, 1992, 57 (1-2) :39-57