Polya's Theorem with zeros

被引:7
作者
Castle, Mari [1 ]
Powers, Victoria [2 ]
Reznick, Bruce [3 ]
机构
[1] Kennesaw State Univ, Dept Math & Stat, Kennesaw, GA 30144 USA
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
Polya's Theorem; Positive polynomial; Sums of squares; POLYNOMIALS;
D O I
10.1016/j.jsc.2011.05.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let R[X] be the real polynomial ring in n variables. Polya's Theorem says that if a homogeneous polynomial p is an element of R[X] is positive on the standard n-simplex Delta(n), then for sufficiently large N all the coefficients of (X-1 + ... + X-n)(N) p are positive. We give a complete characterization of forms, possibly with zeros on Delta(n), for which there exists N so that all coefficients of (X-1 + ... + X-n)(N) p have only nonnegative coefficients, along with a bound on the N needed. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1039 / 1048
页数:10
相关论文
共 11 条
  • [1] BURGDORF S, COMMENTARII IN PRES
  • [2] CASTLE M, 2008, THESIS EMORY U
  • [3] A quantitative Polya's Theorem with zeros
    Castle, Mari
    Powers, Victoria
    Reznick, Bruce
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (09) : 1285 - 1290
  • [4] Approximation of the stability number of a graph via copositive programming
    De Klerk, E
    Pasechnik, DV
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2002, 12 (04) : 875 - 892
  • [5] Hardy Godfrey Harold, 1952, Inequalities, V2nd
  • [6] Effective Polya semi-positivity for non-negative polynomials on the simplex
    Mok, Hoi-Nam
    To, Wing-Keung
    [J]. JOURNAL OF COMPLEXITY, 2008, 24 (04) : 524 - 544
  • [7] Polya G., 1928, VIERTELJSCHR NATURFO, V73, P141
  • [8] A new bound for Polya's Theorem with applications to polynomials positive on polyhedra
    Powers, V
    Reznick, B
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 164 (1-2) : 221 - 229
  • [9] Powers Victoria., 2006, P 2006 INT S SYMBOLI, P285
  • [10] Matrix sum-of-squares relaxations for robust semi-definite programs
    Scherer, CW
    Hol, CWJ
    [J]. MATHEMATICAL PROGRAMMING, 2006, 107 (1-2) : 189 - 211