Spatial Behavior of Solutions for a Class of Hyperbolic Equations with Nonlinear Dissipative Terms

被引:0
作者
Peyravi, A. [1 ]
机构
[1] Shiraz Univ, Sch Sci, Dept Math, Math, Shiraz 7146713565, Iran
关键词
Spatial estimates; hyperbolic equations; viscoelasticity; SAINT-VENANTS PRINCIPLE; BIHARMONIC EQUATION;
D O I
10.30495/JME.2021.1453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the spatial behavior of solutions for a viscoelastic wave equations with nonlinear dissipative terms in a semi-infinite n-dimensional cylindrical domain. An alternative of Phragmen-Lindelof type theorems is obtained in the result. In the case of decay, an upper bound will be derived for the total energy by means of the boundary data. The main point of the contribution is the use of energy method.
引用
收藏
页数:18
相关论文
共 50 条
[21]   Oscillation of Nonlinear Impulsive Hyperbolic Equations of Neutral Type [J].
Ma, Qingxia ;
Zhang, Linli ;
Liu, Anping .
APPLIED MECHANICS AND MATERIALS I, PTS 1-3, 2013, 275-277 :848-+
[22]   Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations [J].
Belonosov, V. S. .
SBORNIK MATHEMATICS, 2017, 208 (08) :1088-1112
[23]   Solutions of hyperbolic equations with the CIP-BS method [J].
Utsumi, T ;
Yabe, T ;
Aoki, T ;
Koga, J ;
Yamagiwa, M .
JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 2004, 47 (04) :768-776
[24]   Blow up of positive initial-energy solutions for a coupled nonlinear higher-order hyperbolic equations [J].
Piskin, Erhan ;
Polat, Necat .
ADVANCEMENTS IN MATHEMATICAL SCIENCES (AMS 2015), 2015, 1676
[25]   Longtime behavior of the hyperbolic equations with an arbitrary internal damping [J].
Xiaoyu Fu .
Zeitschrift für angewandte Mathematik und Physik, 2011, 62 :667-680
[26]   Longtime behavior of the hyperbolic equations with an arbitrary internal damping [J].
Fu, Xiaoyu .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (04) :667-680
[27]   About the solvability behaviour for special classes of nonlinear hyperbolic equations [J].
Wirth, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (02) :421-431
[28]   Convexity and Weighted Integral Inequalities for Energy Decay Rates of Nonlinear Dissipative Hyperbolic Systems [J].
Fatiha Alabau-Boussouira .
Applied Mathematics and Optimization, 2005, 51 :61-105
[29]   Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems [J].
Alabau-Boussouira, F .
APPLIED MATHEMATICS AND OPTIMIZATION, 2005, 51 (01) :61-105
[30]   WEAK SOLUTIONS OF HYPERBOLIC-PARABOLIC VOLTERRA-EQUATIONS [J].
GRIPENBERG, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 343 (02) :675-694