Metabolic heterogeneity and adaptability in brain tumors

被引:48
作者
Badr, Christian E. [1 ,2 ]
Silver, Daniel J. [3 ,4 ]
Siebzehnrubl, Florian A. [5 ]
Deleyrolle, Loic P. [6 ]
机构
[1] Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
[2] Harvard Med Sch, Neurosci Program, Boston, MA 02115 USA
[3] Cleveland Clin Fdn, Dept Cardiovasc & Metab Sci, Lerner Res Inst, 9500 Euclid Ave, Cleveland, OH 44195 USA
[4] Case Western Reserve Univ, Case Comprehens Canc Ctr, Cleveland, OH 44106 USA
[5] Cardiff Univ, European Canc Stem Cell Res Inst, Sch Biosci, Cardiff CF24 4HQ, Wales
[6] Univ Florida, Lillian S Wells Dept Neurosurg, Preston A Wells Jr Ctr Brain Tumor Therapy, Gainesville, FL 32611 USA
基金
英国医学研究理事会;
关键词
Glioma; Tumor microenvironment (TME); Metabolism; Cell communication; Tumor initiating cells; Slow-cycling cells; Immune cells; FATTY-ACID OXIDATION; CANCER STEM-CELLS; GLUCOSE-TRANSPORTER GLUT1; HUMAN GLIOBLASTOMA; SUPPRESSOR-CELLS; INITIATING CELLS; DENDRITIC CELLS; SELF-RENEWAL; INTRATUMOR HETEROGENEITY; SYNTHETIC LETHALITY;
D O I
10.1007/s00018-020-03569-w
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The metabolic complexity and flexibility commonly observed in brain tumors, especially glioblastoma, is fundamental for their development and progression. The ability of tumor cells to modify their genetic landscape and adapt metabolically, subverts therapeutic efficacy, and inevitably instigates therapeutic resistance. To overcome these challenges and develop effective therapeutic strategies targeting essential metabolic processes, it is necessary to identify the mechanisms underlying heterogeneity and define metabolic preferences and liabilities of malignant cells. In this review, we will discuss metabolic diversity in brain cancer and highlight the role of cancer stem cells in regulating metabolic heterogeneity. We will also highlight potential therapeutic modalities targeting metabolic vulnerabilities and examine how intercellular metabolic signaling can shape the tumor microenvironment.
引用
收藏
页码:5101 / 5119
页数:19
相关论文
共 198 条
[1]   Exo-MFA - A 13C metabolic flux analysis framework to dissect tumor microenvironment-secreted exosome contributions towards cancer cell metabolism [J].
Achreja, Abhinav ;
Zhao, Hongyun ;
Yang, Lifeng ;
Yun, Tae Hyun ;
Marini, Juan ;
Nagrath, Deepak .
METABOLIC ENGINEERING, 2017, 43 :156-172
[2]   Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions [J].
Agnihotri, Sameer ;
Zadeh, Gelareh .
NEURO-ONCOLOGY, 2016, 18 (02) :160-172
[3]   TGF-β Receptor Inhibitors Target the CD44high/Id1high Glioma-Initiating Cell Population in Human Glioblastoma [J].
Anido, Judit ;
Saez-Borderias, Andrea ;
Gonzalez-Junca, Alba ;
Rodon, Laura ;
Folch, Gerard ;
Carmona, Maria A. ;
Prieto-Sanchez, Rosa M. ;
Barba, Ignasi ;
Martinez-Saez, Elena ;
Prudkin, Ludmila ;
Cuartas, Isabel ;
Raventos, Carolina ;
Martinez-Ricarte, Francisco ;
Antonia Poca, M. ;
Garcia-Dorado, David ;
Lahn, Michael M. ;
Yingling, Jonathan M. ;
Rodon, Jordi ;
Sahuquillo, Juan ;
Baselga, Jose ;
Seoane, Joan .
CANCER CELL, 2010, 18 (06) :655-668
[4]   Harnessing dendritic cells in cancer [J].
Apetoh, Lionel ;
Locher, Clara ;
Ghiringhelli, Francois ;
Kroemer, Guido ;
Zitvogel, Laurence .
SEMINARS IN IMMUNOLOGY, 2011, 23 (01) :42-49
[5]   A Metabolic Shift toward Pentose Phosphate Pathway Is Necessary for Amyloid Fibril-and Phorbol 12-Myristate 13-Acetate-induced Neutrophil Extracellular Trap (NET) Formation [J].
Azevedo, Estefania P. ;
Rochael, Natalia C. ;
Guimaraes-Costa, Anderson B. ;
de Souza-Vieira, Thiago S. ;
Ganilho, Juliana ;
Saraiva, Elvira M. ;
Palhano, Fernando L. ;
Foguel, Debora .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (36) :22174-22183
[6]   Inhibitors of GLUT/SLC2A Enhance the Action of BCNU and Temozolomide against High-Grade Gliomas [J].
Azzalin, Alberto ;
Nato, Giulia ;
Parmigiani, Elena ;
Garello, Francesca ;
Buffo, Annalisa ;
Magrassi, Lorenzo .
NEOPLASIA, 2017, 19 (04) :364-373
[7]   Glioma stem cells promote radioresistance by preferential activation of the DNA damage response [J].
Bao, Shideng ;
Wu, Qiulian ;
McLendon, Roger E. ;
Hao, Yueling ;
Shi, Qing ;
Hjelmeland, Anita B. ;
Dewhirst, Mark W. ;
Bigner, Darell D. ;
Rich, Jeremy N. .
NATURE, 2006, 444 (7120) :756-760
[8]   Detailed longitudinal sampling of glioma stem cells in situ reveals Chr7 gain and Chr10 loss as repeated events in primary tumor formation and recurrence [J].
Baysan, Mehmet ;
Woolard, Kevin ;
Cam, Margaret C. ;
Zhang, Wei ;
Song, Hua ;
Kotliarova, Svetlana ;
Balamatsias, Demosthenes ;
Linkous, Amanda ;
Ahn, Susie ;
Walling, Jennifer ;
Belova, Galina I. ;
Fine, Howard A. .
INTERNATIONAL JOURNAL OF CANCER, 2017, 141 (10) :2002-2013
[9]   Lipid metabolic reprogramming in cancer cells [J].
Beloribi-Djefaflia, S. ;
Vasseur, S. ;
Guillaumond, F. .
ONCOGENESIS, 2016, 5 :e189-e189
[10]   Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1α [J].
Ben-Shoshan, Jeremy ;
Maysel-Auslender, Sophia ;
Mor, Adi ;
Keren, Gad ;
George, Jacob .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2008, 38 (09) :2412-2418