Homogenization of a mixed boundary condition

被引:2
作者
Marusic-Paloka, Eduard [1 ]
Pazanin, Igor [1 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Math, Zagreb, Croatia
关键词
Periodic boundary condition; homogenization; boundary layer; Laplace equation; the Zaremba problem; LAPLACIAN;
D O I
10.1080/00036811.2022.2027383
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of the periodically mixed boundary value problem. The Dirichlet and Neumann boundary conditions are non-homogeneous and periodically mixed with small period epsilon. Using asymptotic analysis with respect to epsilon << 1, wederive an asymptotic approximation that has boundary condition of the Robin type. We justify the obtained condition by proving an appropriate error estimate.
引用
收藏
页码:4113 / 4125
页数:13
相关论文
共 23 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]  
Allaire G., 1996, P INT C MATH MOD FLO, P1525
[3]  
[Anonymous], 1993, MAT SB
[4]   Homogenization in a thin domain with an oscillatory boundary [J].
Arrieta, Jose M. ;
Pereira, Marcone C. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (01) :29-57
[5]  
Bakhvalov NS, 1989, Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials, DOI [10.1007/978-94-009-2247-1, DOI 10.1007/978-94-009-2247-1]
[6]  
Borisov DI, 2003, ASYMPTOTIC ANAL, V35, P1
[7]   On boundary-value problems for the Laplacian in bounded domains with micro inhomogeneous structure of the boundaries [J].
Chechkin, Gregory A. ;
Gadyl'Shin, Rustem R. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (02) :237-248
[8]  
Cioranescu D., 2016, PORT MATH, V63, P467
[9]   ASYMPTOTIC-EXPANSION FOR A PERIODIC BOUNDARY-CONDITION [J].
FILO, J ;
LUCKHAUS, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 120 (01) :133-173
[10]  
FILO J., 1998, ARCH MATH, V34, P83