On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms

被引:60
作者
Kang, Dongsheng [1 ]
机构
[1] S Cent Univ Nationalities, Dept Math, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
positive solution; quasilinear elliptic equation; hardy inequality; Sobolev-Hardy inequality; variational method;
D O I
10.1016/j.na.2007.01.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-N be a smooth bounded domain such that 0 epsilon Omega, N >= 3. In this paper, we study the critical quasilinear elliptic problems -Delta(p)u - mu vertical bar u vertical bar(p-2)u/vertical bar x vertical bar (p) = vertical bar u vertical bar p*((t)-2)/vertical bar x vertical bar(t) u+lambda vertical bar u vertical bar(q-2)/vertical bar x vertical bar(s) u, u epsilon W-0(1,p)( Omega) with Dirichlet boundary condition, where -Delta(p)u = -div(vertical bar Delta u vertical bar(p-2)del u) 1 < p < N, 0 <= mu < <(mu)over bar> := (N - p/p)(p) lambda > 0,0 <= s, t < p, p <= q < p*(s) := p(N-s)/N-p, P*(t) := p(N-t)/N-p, p*(s) and p*(t) are the critical Sobolev-Hardy exponents. Via variational methods, we deal with the conditions that ensure the existence of positive solutions for the equation. The results depend crucially on the parameters p, q, s, lambda and mu. (c) 2008 Published by Elsevier Ltd.
引用
收藏
页码:1973 / 1985
页数:13
相关论文
共 23 条
[1]  
Abdellaoui B, 2004, ADV DIFFERENTIAL EQU, V9, P481
[2]  
ABDELLAOUI B, EXISTENCE NONEXISTEN
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[5]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[6]   Positive solutions for some singular critical growth nonlinear elliptic equations [J].
Cao, DM ;
He, XM ;
Peng, SJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :589-609
[7]   Solutions to critical elliptic equations with multi-singular inverse square potentials [J].
Cao, DM ;
Han, PG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 224 (02) :332-372
[8]   Solutions for semilinear elliptic equations with critical exponents and Hardy potential [J].
Cao, DM ;
Han, PG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) :521-537
[9]   A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms [J].
Cao, DM ;
Peng, SJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :424-434
[10]   Multiple positive and sign-changing solutions for a singular Schrodinger equation with critical growth [J].
Chen, JQ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :381-400