Optical complex integration-transform for deriving complex fractional squeezing operator

被引:3
作者
Zhang, Ke [1 ,2 ,3 ]
Fan, Cheng-Yu [1 ]
Fan, Hong-Yi [2 ]
机构
[1] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Key Lab Atmospher Opt, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230031, Peoples R China
[3] Huainan Normal Univ, Huainan 232038, Peoples R China
基金
中国国家自然科学基金;
关键词
integration-transform; two-mode; entangled state; Weyl-Wigner correspondence theory; QUANTUM-MECHANICS;
D O I
10.1088/1674-1056/ab6dc9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find a new complex integration-transform which can establish a new relationship between a two-mode operator's matrix element in the entangled state representation and its Wigner function. This integration keeps modulus invariant and therefore invertible. Based on this and the Weyl-Wigner correspondence theory, we find a two-mode operator which is responsible for complex fractional squeezing transformation. The entangled state representation and the Weyl ordering form of the two-mode Wigner operator are fully used in our derivation which brings convenience.
引用
收藏
页数:4
相关论文
共 12 条
[1]   Mother wavelets for complex wavelet transform derived by Einstein-Podolsky-Rosen entangled state representation [J].
Fan, Hong-Yi ;
Lu, Hai-Liang .
OPTICS LETTERS, 2007, 32 (05) :554-556
[2]   EIGENVECTORS OF 2 PARTICLES RELATIVE POSITION AND TOTAL MOMENTUM [J].
FAN, HY ;
KLAUDER, JR .
PHYSICAL REVIEW A, 1994, 49 (02) :704-707
[3]  
FAN HY, 1987, PHYS REV D, V35, P1831, DOI 10.1103/PhysRevD.35.1831
[4]   Newton-Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representations [J].
Fan, HY ;
Lu, HL ;
Fan, Y .
ANNALS OF PHYSICS, 2006, 321 (02) :480-494
[5]   Representations of two-mode squeezing transformations [J].
Fan, HY ;
Fan, Y .
PHYSICAL REVIEW A, 1996, 54 (01) :958-960
[6]  
FAN HY, 1992, J PHYS A-MATH GEN, V25, P3443, DOI 10.1088/0305-4470/25/11/043
[7]   Two mutually conjugated tripartite entangled states and their fractional Fourier transformation kernel [J].
Lue Cui-Hong ;
Fan Hong-Yi ;
Jiang Nian-Quan .
CHINESE PHYSICS B, 2010, 19 (12)
[8]   From fractional Fourier transformation to quantum mechanical fractional squeezing transformation [J].
Lv Cui-Hong ;
Fan Hong-Yi ;
Li Dong-Wei .
CHINESE PHYSICS B, 2015, 24 (02)
[9]   FRESNEL DIFFRACTION AND THE FRACTIONAL-ORDER FOURIER-TRANSFORM [J].
PELLATFINET, P .
OPTICS LETTERS, 1994, 19 (18) :1388-1390
[10]   Quantum mechanics and Group theory. [J].
Weyl, H. .
ZEITSCHRIFT FUR PHYSIK, 1927, 46 (1-2) :1-46