The Schwarz-Pick lemma for planar harmonic mappings

被引:13
|
作者
Chen HuaiHui [1 ]
机构
[1] Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
基金
中国国家自然科学基金;
关键词
harmonic mappings; Schwarz-Pick lemma; Finsler metric; BLOCH CONSTANTS;
D O I
10.1007/s11425-011-4193-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical Schwarz-Pick lemma for holomorphic mappings is generalized to planar harmonic mappings of the unit disk D completely. (I) For any 0 < r < 1 and 0 less than or similar to rho < 1, the author constructs a closed convex domain E(r,rho) such that F(<(Delta)over bar>(z, r)) subset of e(i alpha)E(r,rho) = {e(i alpha)z : z is an element of E(r,rho)} holds for every z is an element of D, w = rho e(i alpha) and harmonic mapping F with F(D) subset of D and F(z) = w, where Delta(z, r) is the pseudo-disk of center z and pseudo-radius r; conversely, for every z is an element of D, w = rho e(i alpha) and w' is an element of e(i alpha)E(r,rho), there exists a harmonic mapping F such that F(D) subset of D, F(z) = w and F(z') = w' for some z' is an element of partial derivative Delta(z, r). (II) The author establishes a Finsler metric H(z)(u) on the unit disk D such that H(F(z))(e(i theta)F(z)(z) + e(-i theta)F((z) over bar)(z)) <= 1/1-|z|(2) holds for any z is an element of D, 0 <= theta <= 2 pi and harmonic mapping F with F(D) subset of D; furthermore, this result is precise and the equality may be attained for any values of z, theta, F(z) and arg(e(i theta)F(z)(z) + e(-i theta)F((z) over bar)(z)).
引用
收藏
页码:1101 / 1118
页数:18
相关论文
共 50 条
  • [1] The Schwarz-Pick lemma for planar harmonic mappings
    CHEN HuaiHui Department of Mathematics
    Science China(Mathematics), 2011, 54 (06) : 1101 - 1118
  • [2] The Schwarz-Pick lemma for planar harmonic mappings
    HuaiHui Chen
    Science China Mathematics, 2011, 54 : 1101 - 1118
  • [3] The Schwarz-Pick lemma and Julia lemma for real planar harmonic mappings
    CHEN HuaiHui
    ScienceChina(Mathematics), 2013, 56 (11) : 2327 - 2334
  • [4] The Schwarz-Pick lemma and Julia lemma for real planar harmonic mappings
    Chen HuaiHui
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (11) : 2327 - 2334
  • [5] The Schwarz-Pick lemma and Julia lemma for real planar harmonic mappings
    HuaiHui Chen
    Science China Mathematics, 2013, 56 : 2327 - 2334
  • [6] Schwarz lemma and Schwarz-Pick lemma for solutions of the α-harmonic equation ☆
    Li, Ming
    Ma, Xiu-Shuang
    Wang, Li-Mei
    BULLETIN DES SCIENCES MATHEMATIQUES, 2025, 201
  • [7] A Schwarz-Pick lemma for the modulus of holomorphic mappings
    Dai, Shaoyu
    Pan, Yifei
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (06) : 864 - 874
  • [8] Linear Connectivity, Schwarz-Pick Lemma and Univalency Criteria for Planar Harmonic Mapping
    Chen, Shao Lin
    Ponnusamy, Saminathan
    Rasila, Antti
    Wang, Xian Tao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (03) : 297 - 308
  • [9] A Schwarz-Pick lemma for the norms of holomorphic mappings in Banach spaces
    Xu, Zhenghua
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2018, 63 (10) : 1459 - 1467
  • [10] SCHWARZ-PICK LEMMA FOR HARMONIC MAPS WHICH ARE CONFORMAL AT A POINT
    Forstneric, Franc
    Kalaj, David
    ANALYSIS & PDE, 2024, 17 (03):