Finite Weyl groupoids

被引:23
作者
Cuntz, Michael [1 ]
Heckenberger, Istvan [2 ]
机构
[1] Univ Kaiserslautern, Fachbereich Math, D-67653 Kaiserslautern, Germany
[2] Univ Marburg, Fachbereich Math & Informat, D-35032 Marburg, Germany
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2015年 / 702卷
关键词
SIMPLICIAL ARRANGEMENTS; NICHOLS ALGEBRA; QUANTUM GROUPS; RANK;
D O I
10.1515/crelle-2013-0033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using previous results concerning the rank two and rank three cases, all connected simply connected Cartan schemes for which the real roots form a finite irreducible root system of arbitrary rank are determined. As a consequence one obtains the list of all crystallographic arrangements, a large subclass of the class of simplicial hyperplane arrangements. Supposing that the rank is at least three, the classification yields Cartan schemes of type A and B, an infinite family of series involving the types C and D, and 74 sporadic examples.
引用
收藏
页码:77 / 108
页数:32
相关论文
共 21 条
[1]   Finite quantum groups and Cartan matrices [J].
Andruskiewitsch, N .
ADVANCES IN MATHEMATICS, 2000, 154 (01) :1-45
[2]  
Andruskiewitsch N, 2010, AM J MATH, V132, P1493
[3]  
[Anonymous], 1990, INFINITE DIMENSIONAL, DOI DOI 10.1017/CBO9780511626234
[4]  
BACLAWSKI K, 1975, ADV MATH, V16, P125
[5]  
Bourbaki N., 1968, Groupes et algebres de Lie
[6]   FUNDAMENTAL GROUP OF SPACES OF REGULAR ORBITS OF FINITE COMPLEX REFLECTING GROUPS [J].
BRIESKORN, E .
INVENTIONES MATHEMATICAE, 1971, 12 (01) :57-+
[7]   Strongly symmetric smooth toric varieties [J].
Cuntz, M. ;
Ren, Y. ;
Trautmann, G. .
KYOTO JOURNAL OF MATHEMATICS, 2012, 52 (03) :597-620
[8]   FINITE WEYL GROUPOIDS OF RANK THREE [J].
Cuntz, M. ;
Heckenberger, I. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (03) :1369-1393
[9]   Crystallographic arrangements: Weyl groupoids and simplicial arrangements [J].
Cuntz, M. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :734-744
[10]   Reflection groupoids of rank two and cluster algebras of type A [J].
Cuntz, M. ;
Heckenberger, I. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (04) :1350-1363