Raman Characterization of the CanMars Rover Field Campaign Samples Using the Raman Laser Spectrometer ExoMars Simulator: Implications for Mars and Planetary Exploration

被引:5
作者
Lalla, Emmanuel A. [1 ]
Konstantinidis, Menelaos [1 ,2 ,3 ]
Veneranda, Marco [4 ]
Daly, Michael G. [1 ]
Manrique, Jose Antonio [4 ]
Lymer, Elizabeth A. [1 ]
Freemantle, James [1 ]
Cloutis, Edward A. [5 ]
Stromberg, Jessica M. [5 ,6 ]
Shkolyar, Svetlana [7 ,8 ,9 ]
Caudill, Christy [10 ]
Applin, Daniel [5 ]
Vago, Jorge L. [11 ]
Rull, Fernando [4 ]
Lopez-Reyes, Guillermo [4 ]
机构
[1] York Univ, Lassonde Sch Engn, Ctr Res Earth & Space Sci, 4700 Keele St, Toronto, ON M3J 1P3, Canada
[2] Univ Toronto, Dalla Lana Sch Publ Hlth, Div Biostat, Toronto, ON, Canada
[3] Hosp Sick Children, Child Hlth Evaluat Sci, Toronto, ON, Canada
[4] Univ Valladolid, CSIC, CAB, Unidad Asociada, Boecillo, Spain
[5] Univ Winnipeg, Dept Geog, Winnipeg, MB, Canada
[6] CSIRO Mineral Resources, Kensington, NSW, Australia
[7] Univ Space Res Assoc, Columbia, MD USA
[8] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[9] Blue Marble Space Inst Sci, Seattle, WA USA
[10] Univ Western Ontario, Dept Earth Sci, Ctr Planetary Sci & Explorat, London, ON, Canada
[11] European Space Agcy, Estec, SCI S, Noordwijk, Netherlands
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Rover simulation mission; Mars; Raman spectroscopy; Planetary exploration; MULTIVARIATE-ANALYSIS; DIFFERENT WAVELENGTHS; GALE CRATER; SPECTROSCOPY; SPECTRA; IDENTIFICATION; HABITABILITY; MINERALS; ANALOGS; MISSION;
D O I
10.1089/ast.2021.0055
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Mars 2020 Perseverance rover landed on February 18, 2021, and has started ground operations. The ExoMars Rosalind Franklin rover will touch down on June 10, 2023. Perseverance will be the first-ever Mars sample caching mission-a first step in sample return to Earth. SuperCam and Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) on Perseverance, and Raman Laser Spectrometer (RLS) on Rosalind Franklin, will comprise the first ever in situ planetary mission Raman spectroscopy instruments to identify rocks, minerals, and potential organic biosignatures on Mars' surface. There are many challenges associated when using Raman instruments and the optimization and quantitative analysis of resulting data. To understand how best to overcome them, we performed a comprehensive Raman analysis campaign on CanMars, a Mars sample caching rover analog mission undertaken in Hanksville, Utah, USA, in 2016. The Hanksville region presents many similarities to Oxia Planum's past habitable conditions, including liquid water, flocculent, and elemental compounds (such as clays), catalysts, substrates, and energy/food sources for life. We sampled and conducted a complete band analysis of Raman spectra as mission validation analysis with the RLS ExoMars Simulator or RLS Sim, a breadboard setup representative of the ExoMars RLS instrument. RLS Sim emulates the operational behavior of RLS on the Rosalind Franklin rover. Given the high fidelity of the Mars analog site and the RLS Sim, the results presented here may provide important information useful for guiding in situ analysis and sample triage for caching relevant for the Perseverance and Rosalind Franklin missions. By using the RLS Sim on CanMars samples, our measurements detected oxides, sulfates, nitrates, carbonates, feldspars, and carotenoids, many with a higher degree of sensitivity than past results. Future work with the RLS Sim will aim to continue developing and improving the capability of the RLS system in the future ExoMars mission.
引用
收藏
页码:416 / 438
页数:23
相关论文
共 117 条
  • [1] ChemCam results from the Shaler outcrop in Gale crater, Mars
    Anderson, Ryan
    Bridges, J. C.
    Williams, A.
    Edgar, L.
    Ollila, A.
    Williams, J.
    Nachon, M.
    Mangold, N.
    Fisk, M.
    Schieber, J.
    Gupta, S.
    Dromart, G.
    Wiens, R.
    Le Mouelic, S.
    Forni, O.
    Lanza, N.
    Mezzacappa, A.
    Sautter, V.
    Blaney, D.
    Clark, B.
    Clegg, S.
    Gasnault, O.
    Lasue, J.
    Leveille, R.
    Lewin, E.
    Lewis, K. W.
    Maurice, S.
    Newsom, H.
    Schwenzer, S. P.
    Vaniman, D.
    [J]. ICARUS, 2015, 249 : 2 - 21
  • [2] [Anonymous], 2009, GEOLOGIE
  • [3] RAMAN SPECTRUM OF ALPHA QUARTZ AT HIGH PRESSURES
    ASELL, JF
    NICOL, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (12) : 5395 - &
  • [4] Ashcroft N.W., 2022, Cengage Learning
  • [5] RAMAN-SPECTRA OF TITANIUM-DIOXIDE
    BALACHANDRAN, U
    EROR, NG
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 1982, 42 (03) : 276 - 282
  • [6] Geological evaluation of the MSRAD field site by a human field party: Implications for rover-based exploration operations and for the future human exploration of Mars
    Beaty, David W.
    Hipkin, Victoria J.
    Caudill, Christy M.
    Hansen, Robin F.
    Hausrath, Elisabeth M.
    Maggiori, Catherine
    McCoubrey, Ryan
    Parrish, Joseph C.
    Ralston, S. J.
    [J]. PLANETARY AND SPACE SCIENCE, 2019, 171 : 34 - 49
  • [7] Beegle L, 2015, 2015 IEEE AEROSPACE CONFERENCE
  • [8] Feldspar Raman shift and application as a magmatic thermobarometer
    Befus, Kenneth S.
    Lin, Jung-Fu
    Cisneros, Miguel
    Fu, Suyu
    [J]. AMERICAN MINERALOGIST, 2018, 103 (04) : 600 - 609
  • [9] Remote Raman spectroscopy of nature rocks
    Berlanga, Genesis
    Acosta-Maeda, Tayro E.
    Sharma, Shiv K.
    Porter, John N.
    Dera, Przemyslaw
    Shelton, Hannah
    Taylor, G. Jeffrey
    Misra, Anupam K.
    [J]. APPLIED OPTICS, 2019, 58 (32) : 8971 - 8980
  • [10] Vibrational spectra and structure of kaolinite: A computer simulation study
    Bougeard, D
    Smirnov, KS
    Geidel, E
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (39): : 9210 - 9217