Experimental researches of acoustical modes of various types of resonant photo-acoustic detectors

被引:13
作者
Sherstov, Igor [1 ,2 ]
Chetvergova, Lyana [1 ]
机构
[1] Russian Acad Sci, Inst Laser Phys, Siberian Branch, 15B Ac Lavrentieva Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, 1 Pirogova Str, Novosibirsk 630090, Russia
关键词
Resonant differential photo-acoustic detector; Ring longitudinal acoustic modes; Helmholtz differential resonator; GAS-ANALYSIS; CELL; SPECTROMETER; SPECTROSCOPY;
D O I
10.1016/j.optcom.2019.125184
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An experimental study of acoustic modes of resonant photo-acoustic detectors (PAD) of various types has been carried out. It is shown that ring longitudinal modes are formed in resonant differential PADs (Miklos's and Kapitanov's schemes) with two parallel acoustic resonators that protrude from the acoustic resonators of the detector into the buffer cavities for a short distance (similar to 1-2 mm) and do not reach the flanges (windows) of the PAD. This property of the ring longitudinal acoustic modes of differential PADs significantly reduces the sensitivity of the detectors to the parasitic effect of background absorption by the detector windows. The optimal length of the buffer cavities of the differential PAD is comparable to the diameter of the acoustic resonators of this detector (similar to 10 mm). It was also experimentally shown that in the longitudinal resonant PAD (Harren's scheme) only longitudinal acoustic modes are formed along the entire length of the detector, in which the antinodes of pressure oscillations of the standing sound wave in resonance are located on the flanges (windows) of the buffer cavities, which reduces the noise immunity of this detector to the effect of background absorption in windows as compared to the ring modes of the differential resonant PAD.
引用
收藏
页数:18
相关论文
共 24 条
[1]  
[Anonymous], 2019, SOUND SPEED AIR
[2]   LONGITUDINAL RESONANT SPECTROPHONE FOR CO-LASER PHOTOACOUSTIC-SPECTROSCOPY [J].
BERNEGGER, S ;
SIGRIST, MW .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1987, 44 (02) :125-132
[3]   Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection [J].
Bijnen, FGC ;
Reuss, J ;
Harren, FJM .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (08) :2914-2923
[4]   DIFFERENTIAL HELMHOLTZ RESONATOR AS AN OPTOACOUSTIC DETECTOR [J].
BUSSE, G ;
HERBOECK, D .
APPLIED OPTICS, 1979, 18 (23) :3959-3961
[5]   An improved CO2 laser intracavity photoacoustic spectrometer for trace gas analysis [J].
Fink, T ;
Buscher, S ;
Gabler, R ;
Yu, Q ;
Dax, A ;
Urban, W .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (11) :4000-4004
[6]  
Harren F. J., 2012, ENCY ANAL CHEM, DOI [DOI 10.1002/9780470027318.A0718.PUB2, 10.1002/9780470027318.a0718.pub2]
[7]   SENSITIVE INTRACAVITY PHOTOACOUSTIC MEASUREMENTS WITH A CO2 WAVE-GUIDE LASER [J].
HARREN, FJM ;
BIJNEN, FGC ;
REUSS, J ;
VOESENEK, LACJ ;
BLOM, CWPM .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1990, 50 (02) :137-144
[8]   Two-channel opto-acoustic diode laser spectrometer and fine structure of methane absorption spectra in 6070-6180 cm-1 region [J].
Kapitanov, V. A. ;
Ponomarev, Yu. N. ;
Tyryshkin, I. S. ;
Rostov, A. P. .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2007, 66 (4-5) :811-818
[9]   LaserBreeze gas analyzer for noninvasive diagnostics of air exhaled by patients [J].
Karapuzikov, A. A. ;
Sherstov, I. V. ;
Kolker, D. B. ;
Karapuzikov, A. I. ;
Kistenev, Yu V. ;
Kuzmin, D. A. ;
Shtyrov, M. Yu ;
Dukhovnikova, N. Yu ;
Zenov, K. G. ;
Boyko, A. A. ;
Starikova, M. K. ;
Tikhonyuk, I. I. ;
Miroshnichenko, I. B. ;
Miroshnichenko, M. B. ;
Myakishev, Yu B. ;
Lokonov, V. N. .
PHYSICS OF WAVE PHENOMENA, 2014, 22 (03) :189-196
[10]  
Karapuzikov A.I., 2007, ATMOS OCEAN OPT, V20, P418