Experimental Evaluation of RGB-D Visual Odometry Methods

被引:16
|
作者
Fang, Zheng [1 ]
Zhang, Yu [2 ]
机构
[1] Northeastern Univ, Shenyang, Liaoning, Peoples R China
[2] Zhejiang Univ, Hangzhou 310003, Zhejiang, Peoples R China
关键词
Motion Estimation; Visual Odometry; RGB-D Camera; Point Cloud; Depth Image; SCAN REGISTRATION;
D O I
10.5772/59991
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
RGB-D cameras that can provide rich 2D visual and 3D depth information are well suited to the motion estimation of indoor mobile robots. In recent years, several RGB-D visual odometry methods that process data from the sensor in different ways have been proposed. This paper first presents a brief review of recently proposed RGB-D visual odometry methods, and then presents a detailed analysis and comparison of eight state-of-the-art realtime 6DOF motion estimation methods in a variety of challenging scenarios, with a special emphasis on the trade-off between accuracy, robustness and computation speed. An experimental comparison is conducted using publicly available benchmark datasets and author-collected datasets in various scenarios, including long corridors, illumination changing environments and fast motion scenarios. Experimental results present both quantitative and qualitative differences between these methods and provide some guidelines on how to choose the right algorithm for an indoor mobile robot according to the quality of the RGB-D data and environmental characteristics.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] RGB-D Visual Odometry in Dynamic Environments Using Line Features
    Zhang H.
    Fang Z.
    Yang G.
    Jiqiren/Robot, 2019, 41 (01): : 75 - 82
  • [32] RGB-D visual odometry by constructing and matching features at superpixel level
    Yang, Meiyi
    Xiong, Junlin
    Li, Youfu
    ROBOTICA, 2024, 42 (08) : 2619 - 2634
  • [33] Continuous Direct Sparse Visual Odometry from RGB-D Images
    Ghaffari, Maani
    Clark, William
    Bloch, Anthony
    Eustice, Ryan M.
    Grizzle, Jessy W.
    ROBOTICS: SCIENCE AND SYSTEMS XV, 2019,
  • [34] Autonomous Quadrotor Flight Using Onboard RGB-D Visual Odometry
    Valenti, Roberto G.
    Dryanovski, Ivan
    Jaramillo, Carlos
    Strom, Daniel Perea
    Xiao, Jizhong
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5233 - 5238
  • [35] Optimization Algorithm of RGB-D SLAM Visual Odometry based on Triangulation
    Dong J.
    Jiang Y.
    Han Z.
    Dong, Jingwei (djw@hrbust.edu.cn), 1600, Totem Publishers Ltd (16): : 438 - 445
  • [36] RGB-D SLAM Combining Visual Odometry and Extended Information Filter
    Zhang, Heng
    Liu, Yanli
    Tan, Jindong
    Xiong, Naixue
    SENSORS, 2015, 15 (08) : 18742 - 18766
  • [37] Robust Visual Odometry to Irregular Illumination Changes with RGB-D camera
    Kim, Pyojin
    Lim, Hyon
    Kim, H. Jin
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3688 - 3694
  • [38] Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera
    Huang, Albert S.
    Bachrach, Abraham
    Henry, Peter
    Krainin, Michael
    Maturana, Daniel
    Fox, Dieter
    Roy, Nicholas
    ROBOTICS RESEARCH, ISRR, 2017, 100
  • [39] Visual Odometry Using Non-Overlapping RGB-D Cameras
    Xu, Hang
    Guo, Yanning
    Feng, Zhen
    Chen, Zhen
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 843 - 848
  • [40] Graph-Based Visual SLAM and Visual Odometry Using an RGB-D Camera
    Kluessendorff, Jan Helge
    Hartmann, Jan
    Forouher, Dariush
    Maehle, Erik
    2013 9TH INTERNATIONAL WORKSHOP ON ROBOT MOTION AND CONTROL (ROMOCO), 2013, : 288 - 293