Inferring single-trial neural population dynamics using sequential auto-encoders

被引:358
作者
Pandarinath, Chethan [1 ,2 ,3 ,4 ,5 ,6 ]
O'Shea, Daniel J. [5 ,7 ]
Collins, Jasmine [8 ,22 ]
Jozefowicz, Rafal [8 ,23 ]
Stavisky, Sergey D. [4 ,5 ,6 ,7 ]
Kao, Jonathan C. [5 ,9 ]
Trautmann, Eric M. [7 ]
Kaufman, Matthew T. [7 ,24 ]
Ryu, Stephen I. [5 ,10 ]
Hochberg, Leigh R. [11 ,12 ,13 ,14 ]
Henderson, Jaimie M. [4 ,6 ]
Shenoy, Krishna V. [5 ,6 ,15 ,16 ,17 ,18 ]
Abbott, L. F. [19 ,20 ,21 ]
Sussillo, David [5 ,6 ,8 ]
机构
[1] Emory Univ, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
[3] Emory Univ, Dept Neurosurg, Atlanta, GA 30322 USA
[4] Stanford Univ, Dept Neurosurg, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[6] Stanford Univ, Stanford Neurosci Inst, Stanford, CA 94305 USA
[7] Stanford Univ, Neurosci Grad Program, Stanford, CA 94305 USA
[8] Google AI, Mountain View, CA USA
[9] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA
[10] Palo Alto Med Fdn, Dept Neurosurg, Palo Alto, CA USA
[11] Vet Affairs Med Ctr, VA RR&D Ctr Neurorestorat & Neurotechnol, Providence, RI USA
[12] Harvard Med Sch, Massachusetts Gen Hosp, Dept Neurol, Ctr Neurotechnol & Neurorecovery, Boston, MA USA
[13] Brown Univ, Sch Engn, Providence, RI 02912 USA
[14] Brown Univ, Carney Inst Brain Sci, Providence, RI 02912 USA
[15] Stanford Univ, Dept Neurobiol, Stanford, CA 94305 USA
[16] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[17] Stanford Univ, Bio X Program, Stanford, CA 94305 USA
[18] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA
[19] Columbia Univ, Zuckerman Mind Brain Behav Inst, New York, NY USA
[20] Columbia Univ, Dept Neurosci, New York, NY USA
[21] Columbia Univ, Dept Physiol & Cellular Biophys, New York, NY USA
[22] Univ Calif Berkeley, Berkeley, CA 94720 USA
[23] OpenAI, San Francisco, CA USA
[24] Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA
基金
美国国家卫生研究院;
关键词
DEEP BRAIN-STIMULATION; FIELD POTENTIAL OSCILLATIONS; GAUSSIAN-PROCESS; CORTEX;
D O I
10.1038/s41592-018-0109-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Neuroscience is experiencing a revolution in which simultaneous recording of thousands of neurons is revealing population dynamics that are not apparent from single-neuron responses. This structure is typically extracted from data averaged across many trials, but deeper understanding requires studying phenomena detected in single trials, which is challenging due to incomplete sampling of the neural population, trial-to-trial variability, and fluctuations in action potential timing. We introduce latent factor analysis via dynamical systems, a deep learning method to infer latent dynamics from single-trial neural spiking data. When applied to a variety of macaque and human motor cortical datasets, latent factor analysis via dynamical systems accurately predicts observed behavioral variables, extracts precise firing rate estimates of neural dynamics on single trials, infers perturbations to those dynamics that correlate with behavioral choices, and combines data from non-overlapping recording sessions spanning months to improve inference of underlying dynamics.
引用
收藏
页码:805 / +
页数:18
相关论文
共 54 条
[1]   Single-Trial Neural Correlates of Arm Movement Preparation [J].
Afshar, Afsheen ;
Santhanam, Gopal ;
Yu, Byron M. ;
Ryu, Stephen I. ;
Sahani, Maneesh ;
Shenoy, Krishna V. .
NEURON, 2011, 71 (03) :555-564
[2]  
Aghagolzadeh M, 2014, IEEE ENG MED BIO, P3033, DOI 10.1109/EMBC.2014.6944262
[3]   Brain-wide neuronal dynamics during motor adaptation in zebrafish [J].
Ahrens, Misha B. ;
Li, Jennifer M. ;
Orger, Michael B. ;
Robson, Drew N. ;
Schier, Alexander F. ;
Engert, Florian ;
Portugues, Ruben .
NATURE, 2012, 485 (7399) :471-U80
[4]  
[Anonymous], DRAW RECURRENT NEURA
[5]  
[Anonymous], CLIN GOV
[6]  
[Anonymous], TUTORIAL VARIATIONAL
[7]  
[Anonymous], 2016, ADV NEUR IN
[8]  
[Anonymous], 2011, Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
[9]  
[Anonymous], 2012, ABS12070580 CORR
[10]  
[Anonymous], 2014, ARXIV