Interaction theory of mirror-symmetry soliton pairs in nonlocal nonlinear Schrodinger equation

被引:55
作者
Song, Li-Min [1 ]
Yang, Zhen-Jun [1 ]
Pang, Zhao-Guang [1 ]
Li, Xing-Liang [1 ]
Zhang, Shu-Min [1 ]
机构
[1] Hebei Normal Univ, Coll Phys & Informat Engn, Hebei Adv Thin Films Key Lab, Shijiazhuang 050024, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlocal nonlinear Schrodinger equation; Optical soliton; Nonlinear propagation;
D O I
10.1016/j.aml.2018.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we theoretically investigate the evolution of the soliton pairs in strongly nonlocal nonlinear media, which is modeled by the nonlocal nonlinear Schrodinger equation. Taking two pairs of solitons as an example, which initial incident directions have a mirror symmetry, a set of mathematical expressions are derived to describe the soliton pairs' propagation, the soliton spacing, the area of the optical field. The results demonstrate that the motion state of the soliton pairs is mirror-symmetry. Numerical simulations are carried out to illustrate the quintessential propagation properties. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:42 / 48
页数:7
相关论文
共 11 条
[1]  
Agrawal GP, 2013, 2013 OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE (OFC/NFOEC)
[2]   Large phase shift of nonlocal optical spatial solitons [J].
Guo, Q ;
Luo, B ;
Yi, FH ;
Chi, S ;
Xie, YQ .
PHYSICAL REVIEW E, 2004, 69 (01) :8
[3]   Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium [J].
Guo, Rui ;
Liu, Yue-Feng ;
Hao, Hui-Qin ;
Qi, Feng-Hua .
NONLINEAR DYNAMICS, 2015, 80 (03) :1221-1230
[4]   Modulation instability, conservation laws and soliton solutions for an inhomogeneous discrete nonlinear Schrodinger equation [J].
Hao, Hui-Qin ;
Guo, Rui ;
Zhang, Jian-Wen .
NONLINEAR DYNAMICS, 2017, 88 (03) :1615-1622
[5]   Theory of multibeam interactions in strongly nonlocal nonlinear media [J].
Lu, Daquan ;
Hu, Wei .
PHYSICAL REVIEW A, 2009, 80 (05)
[6]   Creation and Manipulation of Stable Dark Solitons and Vortices in Microcavity Polariton Condensates [J].
Ma, Xuekai ;
Egorov, Oleg A. ;
Schumacher, Stefan .
PHYSICAL REVIEW LETTERS, 2017, 118 (15)
[7]   Rogue wave solutions for the coupled cubic-quintic nonlinear Schrodinger equations with variable coefficients [J].
Qi, Feng-Hua ;
Xu, Xiao-Ge ;
Wang, Pan .
APPLIED MATHEMATICS LETTERS, 2016, 54 :60-65
[8]   Accessible solitons [J].
Snyder, AW ;
Mitchell, DJ .
SCIENCE, 1997, 276 (5318) :1538-1541
[9]   Variable sinh-Gaussian solitons in nonlocal nonlinear Schrodinger equation [J].
Yang, Zhen-Jun ;
Zhang, Shu-Min ;
Li, Xing-Liang ;
Pang, Zhao-Guang .
APPLIED MATHEMATICS LETTERS, 2018, 82 :64-70
[10]   Interaction between anomalous vortex beams in nonlocal media [J].
Yang, Zhen-Jun ;
Yang, Zhen-Feng ;
Li, Jian-Xing ;
Dai, Zhi-Ping ;
Zhang, Shu-Min ;
Li, Xing-Liang .
RESULTS IN PHYSICS, 2017, 7 :1485-1486