Generation of Neurospheres from Human Adipose-Derived Stem Cells

被引:29
|
作者
Yang, Erfang [1 ]
Liu, Na [1 ]
Tang, Yingxin [1 ]
Hu, Yang [1 ]
Zhang, Ping [1 ]
Pan, Chao [1 ]
Dong, Shasha [1 ]
Zhang, Youping [1 ]
Tang, Zhouping [1 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Hosp, Dept Neurol, Tongji Med Coll, Wuhan 430030, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
NEURAL DIFFERENTIATION; TISSUE; POPULATION;
D O I
10.1155/2015/743714
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Transplantation of neural stem cells (NSCs) to treat neurodegenerative disease shows promise; however, the clinical application of NSCs is limited by the invasive procurement and ethical concerns. Adipose-derived stem cells (ADSCs) are a source of multipotent stem cells that can self-renew and differentiate into various kinds of cells; this study intends to generate neurospheres from human ADSCs by culturing ADSCs on uncoated culture flasks in serum-free neurobasal medium supplemented with B27, basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF); the ADSCs-derived neurospheres were terminally differentiated after growth factor withdrawal. Expression of Nestin, NeuN, MAP2, and GFAP in ADSCs and terminally differentiated neurospheres was shown by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blotting, and immunocytochemistry; cell proliferation in neurospheres was evaluated by cell cycle analyses, immunostaining, and flow cytometry. These data strongly support the conclusion that human ADSCs can successfully differentiate into neurospheres efficiently on uncoated culture flasks, which present similar molecular marker pattern and proliferative ability with NSCs derived from embryonic and adult brain tissues. Therefore, human ADSCs may be an ideal alternative source of stem cells for the treatment of neurodegenerative diseases.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Natural Membrane Differentiates Human Adipose-Derived Mesenchymal Stem Cells to Neurospheres by Mechanotransduction Related to YAP and AMOT Proteins
    de Oliveira, Nathalia Barth
    Irioda, Ana Carolina
    Ferreira Stricker, Priscila Elias
    Mogharbel, Bassam Felipe
    da Rosa, Nadia Nascimento
    Moreira Dziedzic, Dilcele Silva
    Teixeira de Carvalho, Katherine Athayde
    MEMBRANES, 2021, 11 (09)
  • [2] Characterization of human adipose-derived stem cells
    Gaiba, Silvana
    de Franca, Lucimar Pereira
    de Franca, Jeronimo Pereira
    Ferreira, Lydia Masako
    ACTA CIRURGICA BRASILEIRA, 2012, 27 (07) : 471 - 476
  • [3] Rapid generation of functional hepatocyte-like cells from human adipose-derived stem cells
    Fu, Yanli
    Deng, Jie
    Jiang, Qingyuan
    Wang, Yuan
    Zhang, Yujing
    Yao, Yunqi
    Cheng, Fuyi
    Chen, Xiaolei
    Xu, Fen
    Huang, Meijuan
    Yang, Yang
    Zhang, Shuang
    Yu, Dechao
    Zhao, Robert Chunhua
    Wei, Yuquan
    Deng, Hongxin
    STEM CELL RESEARCH & THERAPY, 2016, 7
  • [4] Generation of Induced Pluripotent Stem Cells from Human Adipose-Derived Stem Cells Without c-MYC
    Aoki, Tetsuhiro
    Ohnishi, Hiroe
    Oda, Yasuaki
    Tadokoro, Mika
    Sasao, Mari
    Kato, Hiroyuki
    Hattori, Koji
    Ohgushi, Hajime
    TISSUE ENGINEERING PART A, 2010, 16 (07) : 2197 - 2206
  • [5] Adipose-derived stem cells from the breast
    Yang, Jie
    Xiong, Lingyun
    Wang, Rongrong
    Sun, Jiaming
    Hirche, Christoph
    JOURNAL OF RESEARCH IN MEDICAL SCIENCES, 2014, 19 (02): : 112 - 116
  • [6] Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates
    Zhu, Min
    Heydarkhan-Hagvall, Sepideh
    Hedrick, Marc
    Benhaim, Prosper
    Zuk, Patricia
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (79):
  • [7] The Effect of Age on Human Adipose-Derived Stem Cells
    Wu, Wei
    Niklason, Laura
    Steinbacher, Derek M.
    PLASTIC AND RECONSTRUCTIVE SURGERY, 2013, 131 (01) : 27 - 37
  • [8] Osteogenic potential of induced pluripotent stem cells from human adipose-derived stem cells
    Mao, Shih-Hsuan
    Chen, Chih-Hao
    Chen, Chien-Tzung
    STEM CELL RESEARCH & THERAPY, 2019, 10 (01)
  • [9] Differences in the MicroRNA profiles of subcutaneous adipose-derived stem cells and omental adipose-derived stem cells
    Hu, Feihu
    Xu, Peng
    Sun, Bo
    Xiao, Zhongdang
    GENE, 2017, 625 : 55 - 63
  • [10] ADIPOSE-DERIVED STEM CELLS: FROM MICE TO MAN
    Chan, K. Ming
    Beveridge, Julie
    Webber, Christine A.
    MUSCLE & NERVE, 2018, 58 (02) : 186 - 188