Pro-p subgroups of profinite completions of 3-manifold groups

被引:4
|
作者
Wilton, Henry [1 ]
Zalesskii, Pavel [2 ]
机构
[1] Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
[2] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2017年 / 96卷
基金
英国工程与自然科学研究理事会;
关键词
FINITE CENTRALIZER; TORSION ELEMENTS; SEPARABILITY; GEOMETRIES;
D O I
10.1112/jlms.12067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We completely describe the finitely generated pro-p subgroups of the profinite completion of the fundamental group of an arbitrary 3-manifold. We also prove a pro-p analogue of the main theorem of Bass-Serre theory for finitely generated pro-p groups.
引用
收藏
页码:293 / 308
页数:16
相关论文
共 50 条
  • [1] Virtual pro-p properties of 3-manifold groups
    Wilkes, Gareth
    JOURNAL OF GROUP THEORY, 2017, 20 (05) : 999 - 1023
  • [2] Profinite and pro-p completions of poincare duality groups of dimension 3
    Kochloukova, Dessislava H.
    Zalesskii, Pavel A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (04) : 1927 - 1949
  • [3] Pro-p groups that act on profinite trees
    Ribes, Luis
    JOURNAL OF GROUP THEORY, 2008, 11 (01) : 75 - 93
  • [4] Groups with the same cohomology as their pro-p completions
    Lorensen, Karl
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (01) : 6 - 14
  • [5] Pro-p completions of Poincaré duality groups
    Jonathan Hillman
    Dessislava Kochloukova
    Igor Lima
    Israel Journal of Mathematics, 2014, 200 : 1 - 17
  • [6] Pro-p completions of Poincar, duality groups
    Hillman, Jonathan
    Kochloukova, Dessislava
    Lima, Igor
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 200 (01) : 1 - 17
  • [7] Pro-p completions of PDn-groups
    Hillman, Jonathan
    Kochloukova, Dessislava H.
    ISRAEL JOURNAL OF MATHEMATICS, 2025, 265 (02) : 801 - 831
  • [8] NORMAL SUBGROUPS IN 3-MANIFOLD GROUPS
    SCOTT, P
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 13 (MAY): : 5 - 12
  • [9] Homological approximations for profinite and pro-p limit groups
    Gutierrez, Jhoel S.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (04) : 1510 - 1527
  • [10] Omega subgroups of pro-p groups
    Fernandez-Alcober, Gustavo A.
    Gonzalez-Sanchez, Jon
    Jaikin-Zapirain, Andrei
    ISRAEL JOURNAL OF MATHEMATICS, 2008, 166 (01) : 393 - 412