WAVE PROPAGATION IN DIATOMIC LATTICES

被引:13
作者
Qin, Wen-Xin [1 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
diatomic FPU chain; wave trains; minimax methods; TRAVELING-WAVES; SOLITARY WAVES; EXISTENCE; SOLITONS;
D O I
10.1137/130949609
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study periodic traveling waves (wave trains) in diatomic Fermi-Pasta-Ulam chains (FPU). By applying the minimax principle, we demonstrate the existence of two different periodic waveform functions corresponding, respectively, to light and heavy particles. Our approach applies to the FPU beta-model for each wavenumber and each frequency, and to FPU chains with asymptotic quadratic potential for wavenumbers and frequencies satisfying the nonresonance condition. As an application to monatomic lattices, we show for the monatomic soft FPU beta-model the existence of supersonic wave trains with two different waveform functions for adjacent particles, contrary to the nonexistence of supersonic wave trains with only one waveform function.
引用
收藏
页码:477 / 497
页数:21
相关论文
共 31 条
[1]  
[Anonymous], 1986, CBMS REG C SER MATH
[2]   A novel preserved partial order for cooperative networks of units with overdamped second order dynamics, and application to tilted Frenkel-Kontorova chains [J].
Baesens, C ;
MacKay, RS .
NONLINEARITY, 2004, 17 (02) :567-580
[3]   CRITICAL-POINT THEOREMS FOR INDEFINITE FUNCTIONALS [J].
BENCI, V ;
RABINOWITZ, PH .
INVENTIONES MATHEMATICAE, 1979, 52 (03) :241-273
[4]  
Braun O.M., 2004, TEXT MONOGR
[5]   NON-LINEAR WAVE IN A DIATOMIC TODA LATTICE [J].
DASH, PC ;
PATNAIK, K .
PHYSICAL REVIEW A, 1981, 23 (02) :959-969
[6]  
DREYER W, 2006, ANAL MODELING SIMULA, P467
[7]   Travelling waves in Hamiltonian systems on 2D lattices with nearest neighbour interactions [J].
Feckan, Michal ;
Rothos, Vassilis M. .
NONLINEARITY, 2007, 20 (02) :319-341
[8]  
Filip AM, 1999, COMMUN PUR APPL MATH, V52, P693, DOI 10.1002/(SICI)1097-0312(199906)52:6<693::AID-CPA2>3.3.CO
[9]  
2-0
[10]   Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit [J].
Friesecke, G ;
Pego, RL .
NONLINEARITY, 1999, 12 (06) :1601-1627