Pre-Earthquake Ionospheric Perturbation Identification Using CSES Data via Transfer Learning

被引:15
作者
Xiong, Pan [1 ]
Long, Cheng [2 ]
Zhou, Huiyu [3 ]
Battiston, Roberto [4 ,5 ]
De Santis, Angelo [6 ]
Ouzounov, Dimitar [7 ]
Zhang, Xuemin [1 ]
Shen, Xuhui [8 ]
机构
[1] China Earthquake Adm, Inst Earthquake Forecasting, Beijing, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[3] Univ Leicester, Sch Comp & Math Sci, Leicester, Leics, England
[4] Univ Trento, Dept Phys, Trento, Italy
[5] Trento Inst Fundamental Phys & Applicat, Natl Inst Nucl Phys, Trento, Italy
[6] Ist Nazl Geofis & Vulcanol, Rome, Italy
[7] Chapman Univ, Ctr Excellence Earth Syst Modeling & Observat, Orange, CA USA
[8] Minist Emergency Management China, Natl Inst Nat Hazards, Beijing, Peoples R China
关键词
earthquake; pre-earthquake anomalies; CSES and DEMETER satellites; ionospheric plasma; transfer deep learning; physical mechanisms; DEMETER SATELLITE; ELECTROMAGNETIC-WAVES; LITHOSPHERE; ATTENUATION; ANOMALIES; EXAMPLES; MODEL; PUER;
D O I
10.3389/fenvs.2021.779255
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
During the lithospheric buildup to an earthquake, complex physical changes occur within the earthquake hypocenter. Data pertaining to the changes in the ionosphere may be obtained by satellites, and the analysis of data anomalies can help identify earthquake precursors. In this paper, we present a deep-learning model, SeqNetQuake, that uses data from the first China Seismo-Electromagnetic Satellite (CSES) to identify ionospheric perturbations prior to earthquakes. SeqNetQuake achieves the best performance [F-measure (F1) = 0.6792 and Matthews correlation coefficient (MCC) = 0.427] when directly trained on the CSES dataset with a spatial window centered on the earthquake epicenter with the Dobrovolsky radius and an input sequence length of 20 consecutive observations during night time. We further explore a transferring learning approach, which initially trains the model with the larger Electro-Magnetic Emissions Transmitted from the Earthquake Regions (DEMETER) dataset, and then tunes the model with the CSES dataset. The transfer-learning performance is substantially higher than that of direct learning, yielding a 12% improvement in the F1 score and a 29% improvement in the MCC value. Moreover, we compare the proposed model SeqNetQuake with other five benchmarking classifiers on an independent test set, which shows that SeqNetQuake demonstrates a 64.2% improvement in MCC and approximately a 24.5% improvement in the F1 score over the second-best convolutional neural network model. SeqNetSquake achieves significant improvement in identifying pre-earthquake ionospheric perturbation and improves the performance of earthquake prediction using the CSES data.
引用
收藏
页数:16
相关论文
共 80 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Enhanced ULF radiation observed by DEMETER two months around the strong 2010 Haiti earthquake [J].
Athanasiou, M. A. ;
Anagnostopoulos, G. C. ;
Iliopoulos, A. C. ;
Pavlos, G. P. ;
David, C. N. .
NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2011, 11 (04) :1091-1098
[3]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[4]   Machine learning for data-driven discovery in solid Earth geoscience [J].
Bergen, Karianne J. ;
Johnson, Paul A. ;
de Hoop, Maarten V. ;
Beroza, Gregory C. .
SCIENCE, 2019, 363 (6433) :1299-+
[5]  
Bergstra James, 2013, P MACHINE LEARNING R, V28, P115
[6]   Electromagnetic field observations by the DEMETER satellite in connection with the 2009 L'Aquila earthquake [J].
Bertello, Igor ;
Piersanti, Mirko ;
Candidi, Maurizio ;
Diego, Piero ;
Ubertini, Pietro .
ANNALES GEOPHYSICAE, 2018, 36 (05) :1483-1493
[7]   A mathematical model of lithosphere-atmosphere coupling for seismic events [J].
Carbone, Vincenzo ;
Piersanti, Mirko ;
Materassi, Massimo ;
Battiston, Roberto ;
Lepreti, Fabio ;
Ubertini, Pietro .
SCIENTIFIC REPORTS, 2021, 11 (01)
[8]   Precursory worldwide signatures of earthquake occurrences on Swarm satellite data [J].
De Santis, A. ;
Marchetti, D. ;
Pavon-Carrasco, F. J. ;
Cianchini, G. ;
Perrone, L. ;
Abbattista, C. ;
Alfonsi, L. ;
Amoruso, L. ;
Campuzano, S. A. ;
Carbone, M. ;
Cesaroni, C. ;
De Franceschi, G. ;
De Santis, Anna ;
Di Giovambattista, R. ;
Ippolito, A. ;
Piscini, A. ;
Sabbagh, D. ;
Soldani, M. ;
Santoro, F. ;
Spogli, L. ;
Haagmans, R. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]   A Multiparametric Approach to Study the Preparation Phase of the 2019 M7.1 Ridgecrest (California, United States) Earthquake [J].
De Santis, Angelo ;
Cianchini, Gianfranco ;
Marchetti, Dedalo ;
Piscini, Alessandro ;
Sabbagh, Dario ;
Perrone, Loredana ;
Campuzano, Saioa Arquero ;
Inan, Sedat .
FRONTIERS IN EARTH SCIENCE, 2020, 8
[10]   Magnetic Field and Electron Density Data Analysis from Swarm Satellites Searching for Ionospheric Effects by Great Earthquakes: 12 Case Studies from 2014 to 2016 [J].
De Santis, Angelo ;
Marchetti, Dedalo ;
Spogli, Luca ;
Cianchini, Gianfranco ;
Javier Pavon-Carrasco, F. ;
De Franceschi, Giorgiana ;
Di Giovambattista, Rita ;
Perrone, Loredana ;
Qamili, Enkelejda ;
Cesaroni, Claudio ;
De Santis, Anna ;
Ippolito, Alessandro ;
Piscini, Alessandro ;
Campuzano, Saioa A. ;
Sabbagh, Dario ;
Amoruso, Leonardo ;
Carbone, Marianna ;
Santoro, Francesca ;
Abbattista, Cristoforo ;
Drimaco, Daniela .
ATMOSPHERE, 2019, 10 (07)