Non conducting spherically symmetric fluids

被引:2
作者
Lake, K [1 ]
机构
[1] Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
perfect fluid; shear; flux; Einstein tensor;
D O I
10.1023/B:GERG.0000006965.74658.1c
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A class of spherically symmetric spacetimes invariantly defined by a zero flux condition is examined first from a purely geometrical point of view and then physically by way of Einstein's equations for a general fluid decomposition of the energy-momentum tensor. The approach, which allows a formal inversion of Einstein's equations, explains, for example, why spherically symmetric perfect fluids with spatially homogeneous energy density must be shearfree.
引用
收藏
页码:193 / 197
页数:5
相关论文
共 19 条
[1]  
Cahill M., 1970, J MATH PHYS, V11, P1360
[2]   Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein's equations [J].
Delgaty, MSR ;
Lake, K .
COMPUTER PHYSICS COMMUNICATIONS, 1998, 115 (2-3) :395-415
[3]   Gravitational energy in spherical symmetry [J].
Hayward, SA .
PHYSICAL REVIEW D, 1996, 53 (04) :1938-1949
[4]   OBSERVER TIME AS A COORDINATE IN RELATIVISTIC SPHERICAL HYDRODYNAMICS [J].
HERNANDE.WC ;
MISNER, CW .
ASTROPHYSICAL JOURNAL, 1966, 143 (02) :452-&
[5]   An online interactive geometric database including exact solutions of Einstein's field equations [J].
Ishak, M ;
Lake, K .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (03) :505-514
[6]  
ISHAK M, 2003, UNPUB
[7]  
Kramer D., 1980, EXACT SOLUTIONS EINS
[8]   SPOTTING CONFORMALLY FLAT SOLUTIONS OF THE EINSTEIN EQUATIONS [J].
LAKE, K .
PHYSICAL REVIEW D, 1989, 40 (04) :1344-1345
[9]   CORRECTION [J].
LAKE, K .
PHYSICAL REVIEW D, 1989, 40 (12) :4201-4201
[10]   DYNAMICS OF FLUID SPHERES OF UNIFORM DENSITY [J].
MISRA, RM ;
SRIVASTAVA, DC .
PHYSICAL REVIEW D, 1973, 8 (06) :1653-1657