High added-value materials recovery using electronic scrap-transforming waste to valuable products

被引:52
作者
Gautam, Pushpa [1 ]
Behera, Chhail K. [1 ]
Sinha, Indrajit [2 ]
Gicheva, Gospodinka [3 ]
Singh, Kamalesh K. [1 ]
机构
[1] Banaras Hindu Univ, Indian Inst Technol, Dept Met Engn, Varanasi 221005, Uttar Pradesh, India
[2] Banaras Hindu Univ, Indian Inst Technol, Dept Chem, Varanasi 221005, Uttar Pradesh, India
[3] Univ Min & Geol St Ivan Rilski, Dept Chem, Studentski Grad, Sofia 1700, Bulgaria
关键词
EEE; Waste PCBs; Recovery; Nanoparticles; Nanocomposites; HAV materials; PRINTED-CIRCUIT-BOARDS; PRECIOUS-METAL RECOVERY; COPPER NANOPARTICLES; INDUSTRIAL-TECHNOLOGY; LEACHING BEHAVIOR; EQUIPMENT WEEE; MOBILE PHONES; TONER POWDER; EPOXY-RESIN; IN-SITU;
D O I
10.1016/j.jclepro.2021.129836
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to the rapid development in electronic industries and high consumer demand, electrical and electronic equipment have a shorter lifetime in developed and developing countries markets, leading to tons of electronic waste. The waste Printed circuit board (PCBs) contain many valuable metals like gold and copper and hazardous materials like lead. Therefore, recycling the metallic and non-metallic fractions from waste PCBs using environmentally friendly and suitable sustainable resource utilization techniques is in high demand. In this direction, nanotechnology has also been recently used to recover base metals, toxic metals, and precious metals in different sizes and morphologies. This study provides an up-to-date review of research on recovering high added value (HAV) materials from various electronic waste components. These include high purity metals, nanoparticles, nanostructured alloys, nanocomposites, high purity ultrafine particles, and microfibers. It also includes the properties investigated and the potential applications of the obtained HAV products in fields such as wastewater treatment, detection of incessant pollutants, biomedicine, and catalysis. Current challenges faced in scaling up the e-waste derived nanoproducts manufacturing are also discussed in the concluding remarks.
引用
收藏
页数:19
相关论文
共 187 条
[31]   Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures [J].
Chiang Hung-Lung ;
Lin Kuo-Hsiung ;
Lai Mei-Hsiu ;
Chen Ting-Chien ;
Ma Sen-Yi .
JOURNAL OF HAZARDOUS MATERIALS, 2007, 149 (01) :151-159
[32]   Fate of bromine in pyrolysis of printed circuit board wastes [J].
Chien, YC ;
Wang, HP ;
Lin, KS ;
Huang, YJ ;
Yang, YW .
CHEMOSPHERE, 2000, 40 (04) :383-387
[33]   Micro-copper powders recovered from waste printed circuit boards by electrolysis [J].
Chu, Yingying ;
Chen, Mengjun ;
Chen, Shu ;
Wang, Bin ;
Fu, Kaibin ;
Chen, Haiyan .
HYDROMETALLURGY, 2015, 156 :152-157
[34]   Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans [J].
Creamer, Neil J. ;
Baxter-Plant, Victoria S. ;
Henderson, John ;
Potter, M. ;
Macaskie, Lynne E. .
BIOTECHNOLOGY LETTERS, 2006, 28 (18) :1475-1484
[35]   Metallurgical recovery of metals from electronic waste: A review [J].
Cui, Jirang ;
Zhang, Lifeng .
JOURNAL OF HAZARDOUS MATERIALS, 2008, 158 (2-3) :228-256
[36]   Characterization of shredded television scrap and implications for materials recovery [J].
Cui, Jirang ;
Forssberg, Eric .
WASTE MANAGEMENT, 2007, 27 (03) :415-424
[37]   Mechanical recycling of waste electric and electronic equipment: a review [J].
Cui, JR ;
Forssberg, E .
JOURNAL OF HAZARDOUS MATERIALS, 2003, 99 (03) :243-263
[38]  
Das S, 2017, P SARD 2017 16 INT W
[39]   Bio-Extraction of Precious Metals from Urban Solid Waste [J].
Das, Subhabrata ;
Natarajan, Gayathri ;
Ting, Yen-Peng .
PROCEEDINGS OF THE 1ST INTERNATIONAL PROCESS METALLURGY CONFERENCE (IPMC 2016), 2017, 1805
[40]   Pyrolysis of electrical and electronic wastes [J].
de Marco, I. ;
Caballero, B. M. ;
Chomon, M. J. ;
Laresgoiti, M. F. ;
Torres, A. ;
Fernandez, G. ;
Arnaiz, S. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2008, 82 (02) :179-183