Tailoring porous structure, reducibility and Mn4+ fraction of ε-MnO2 microcubes for the complete oxidation of toluene

被引:43
作者
Minh Tuan Nguyen Dinh [1 ]
Chinh Chien Nguyen [2 ]
Tan Linh Truong Vu [1 ]
Van Thinh Ho [1 ]
Quang Duc Truong [3 ]
机构
[1] Univ Da Nang Univ Sci & Technol, 54 Nguyen Luong Bang, Da Nang 50000, Vietnam
[2] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[3] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Aoba Ku, Katahira 2-1-1, Sendai, Miyagi 9808577, Japan
关键词
epsilon-MnO2; Toluene; Catalytic complete oxidation; MnCO3; Microcubes; Porous structure; ENHANCED CATALYTIC PERFORMANCE; MANGANESE OXIDES; TEMPERATURE OXIDATION; LATTICE OXYGEN; VOCS; MNO2; REDUCTION; REMOVAL; DEFECTS; VACANCY;
D O I
10.1016/j.apcata.2020.117473
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
3D architectures porous epsilon-type manganese dioxide (epsilon-MnO2 ) microcubes (PEMD) are successfully prepared by a glucose-urea-assisted hydrothermal synthesis of MnCO3-carbon composites followed by annealing. It turns out that urea essentially assists in building the cubic shape while glucose plays a crucial role to form carbon inside the microcrystals, which are latterly removed by annealing to generate the porous structure. As a result, epsilon-MnO2 materials possessing extraordinary features including the high porosity, reducibility, lattice oxygen reactivity and Mn4+ fraction, are feasible tailored. These unique properties, all together, significantly improve the catalytic performances of complete oxidation of toluene. Thus, it is found that the optimal catalyst (manganeseglucose-urea ratio of 6-2-6) synthesized at 180 degrees C exhibits an excellent activity for the complete oxidation of toluene (T-90 = 243 degrees C, lower 10 degrees C than that of pristine epsilon-MnO2 ) and stability up to 10 h.
引用
收藏
页数:11
相关论文
共 47 条
[1]   1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol [J].
Bai, Bingyang ;
Li, Junhua ;
Hao, Jiming .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 164 :241-250
[2]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[3]   Mesoporous MnO2 hollow spheres for enhanced catalytic oxidation of formaldehyde [J].
Boyjoo, Yash ;
Rochard, Guillaume ;
Giraudon, Jean-Marc ;
Liu, Jian ;
Lamonier, Jean-Francois .
SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2019, 20
[4]   STRUCTURAL AND ELECTROCHEMICAL PROPERTIES OF THE PROTON GAMMA-MNO2 SYSTEM [J].
CHABRE, Y ;
PANNETIER, J .
PROGRESS IN SOLID STATE CHEMISTRY, 1995, 23 (01) :1-130
[5]   Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature [J].
Chen, Zhihang ;
Yang, Qing ;
Li, Hua ;
Li, Xuehui ;
Wang, Lefu ;
Tsang, Shik Chi .
JOURNAL OF CATALYSIS, 2010, 276 (01) :56-65
[6]   Catalytic combustion of dimethyl ether over α-MnO2 nanostructures with different morphologies [J].
Cheng, Gao ;
Yu, Lin ;
He, Binbin ;
Sun, Ming ;
Zhang, Bentian ;
Ye, Wenjin ;
Lan, Bang .
APPLIED SURFACE SCIENCE, 2017, 409 :223-231
[7]   Ultrasound-Assisted Nanocasting Fabrication of Ordered Mesoporous MnO2 and Co3O4 with High Surface Areas and Polycrystalline Walls [J].
Deng, Jiguang ;
Zhang, Lei ;
Dai, Hongxing ;
Xia, Yunsheng ;
Jiang, Haiyan ;
Zhang, Huan ;
He, Hong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (06) :2694-2700
[8]   Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures [J].
Ding, YS ;
Shen, XF ;
Gomez, S ;
Luo, H ;
Aindow, M ;
Suib, SL .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (04) :549-555
[9]   On the structural defects in synthetic γ-MnO2S [J].
Hill, LI ;
Verbaere, A .
JOURNAL OF SOLID STATE CHEMISTRY, 2004, 177 (12) :4706-4723
[10]   Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods [J].
Hou, Jingtao ;
Li, Yuanzhi ;
Liu, Liangliang ;
Ren, Lu ;
Zhao, Xiujian .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (23) :6736-6741