An Analytical Model for Determining Two-Dimensional Receptor-Ligand Kinetics

被引:17
|
作者
Cheung, Luthur Siu-Lun
Konstantopoulos, Konstantinos [1 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, Johns Hopkins Phys Sci Oncol Ctr, Baltimore, MD 21218 USA
基金
美国国家卫生研究院;
关键词
ADHESIVE DYNAMICS SIMULATIONS; P-SELECTIN; COUETTE-FLOW; TUMOR-CELLS; SHEAR; BINDING; LEUKOCYTES; BOND; TRANSIENT; SURFACES;
D O I
10.1016/j.bpj.2011.04.013
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Cell-cell adhesive interactions play a pivotal role in major pathophysiological vascular processes, such as inflammation, infection, thrombosis, and cancer metastasis, and are regulated by hemodynamic forces generated by blood flow. Cell adhesion is mediated by the binding of receptors to ligands, which are both anchored on two-dimensional (2-D) membranes of apposing cells. Biophysical assays have been developed to determine the unstressed (no-force) 2-D affinity but fail to disclose its dependence on force. Here we develop an analytical model to estimate the 2-D kinetics of diverse receptor-ligand pairs as a function of force, including antibody-antigen, vascular selectin-ligand, and bacterial adhesin-ligand interactions. The model can account for multiple bond interactions necessary to mediate adhesion and resist detachment amid high hemodynamic forces. Using this model, we provide a generalized biophysical interpretation of the counterintuitive force-induced stabilization of cell rolling observed by a select subset of receptor-ligand pairs with specific intrinsic kinetic properties. This study enables us to understand how single-molecule and multibond biophysics modulate the macroscopic cell behavior in diverse pathophysiological processes.
引用
收藏
页码:2338 / 2346
页数:9
相关论文
共 49 条
  • [1] Receptor-Ligand Rebinding Kinetics in Confinement
    Erbas, Aykut
    Olvera de la Cruz, Monica
    Marko, John F.
    BIOPHYSICAL JOURNAL, 2019, 116 (09) : 1609 - 1624
  • [2] Mathematical modelling and computational study of two-dimensional and three-dimensional dynamics of receptor-ligand interactions in signalling response mechanisms
    Garcia-Penarrubia, Pilar
    Galvez, Juan J.
    Galvez, Jesus
    JOURNAL OF MATHEMATICAL BIOLOGY, 2014, 69 (03) : 553 - 582
  • [3] Parametric Analysis for Monitoring 2D Kinetics of Receptor-Ligand Binding
    Sun, Ganyun
    Zhang, Yan
    Huo, Bo
    Long, Mian
    CELLULAR AND MOLECULAR BIOENGINEERING, 2009, 2 (04) : 495 - 503
  • [4] Recent Advances in the Quantitative Determination of Protein Receptor-Ligand Interaction Kinetics
    Xu, Wei
    Meng, Dan
    Li, Ming
    Wang, Xinqian
    Xu, Chenyu
    Zhang, Yifei
    Lu, Dingqiang
    Ren, Ruijuan
    CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2024,
  • [5] Measuring the rapid kinetics of receptor-ligand interactions in live cells using NanoBRET
    Suchankova, Anna
    Harris, Matthew
    Ladds, Graham
    BIOMOLECULAR INTERACTIONS, PT A, 2021, 166 : 1 - 14
  • [6] On the possibility of the existence of orienting hydrodynamic steering effects in the kinetics of receptor-ligand association
    Antosiewicz, Jan M.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2023, 52 (6-7): : 559 - 568
  • [7] Roles of cell and microvillus deformation and receptor-ligand binding kinetics in cell rolling
    Pawar, Parag
    Jadhav, Sameer
    Eggleton, Charles D.
    Konstantopoulos, Konstantinos
    AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2008, 295 (04): : H1439 - H1450
  • [8] Cavity-ligand binding in a simple two-dimensional water model
    Mazovec, G.
    Luksic, M.
    Hribar-Lee, B.
    CONDENSED MATTER PHYSICS, 2016, 19 (01)
  • [9] Interpretations of Receptor-Ligand Dissociation Kinetics from Single-Molecule Pulling Experiments
    Feng, Yuan
    Lin, Ji
    Qian, Jin
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2017, 9 (03)
  • [10] Receptor-ligand non-equilibrium kinetics (RLNEK) 1.0: An integrated Trackmate laminar flow chamber analysis
    Rollins, Zachary A.
    Chan, Allison
    Shirure, Venktesh S.
    George, Steven C.
    JOURNAL OF IMMUNOLOGICAL METHODS, 2022, 511