Spectral thresholding for the estimation of Markov chain transition operators

被引:4
作者
Loeffler, Matthias [1 ,3 ]
Picard, Antoine [2 ]
机构
[1] Swiss Fed Inst Technol, Seminar Stat, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Ecole Normale Super, 45 Rue Ulm, F-75005 Paris, France
[3] Univ Cambridge, Cambridge, England
基金
英国工程与自然科学研究理事会;
关键词
Markov chain; transition operator; transition density; low rank; SDE; nonparametric estimation; minimax rates of convergence; POSTERIOR CONTRACTION RATES; NONPARAMETRIC-ESTIMATION; MATRIX COMPLETION; SCALAR DIFFUSIONS; SPLINE FUNCTIONS; DENSITY; REDUCTION; MODELS;
D O I
10.1214/21-EJS1935
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider nonparametric estimation of the transition operator P of a Markov chain and its transition density p where the singular values of P are assumed to decay exponentially fast. This is for instance the case for periodised, reversible multi-dimensional diffusion processes observed in low frequency. We investigate the performance of a spectral hard thresholded Galerkin-type estimator for P and p, discarding most of the estimated singular triplets. The construction is based on smooth basis functions such as wavelets or B-splines. We show its statistical optimality by establishing matching minimax upper and lower bounds in L-2-loss. Particularly, the effect of the dimensionality d of the state space on the nonparametric rate improves from 2d to d compared to the case without singular value decay.
引用
收藏
页码:6281 / 6310
页数:30
相关论文
共 69 条
[2]  
Adams Robert A., 2003, Sobolev Space, V140
[3]   NOISY MATRIX DECOMPOSITION VIA CONVEX RELAXATION: OPTIMAL RATES IN HIGH DIMENSIONS [J].
Agarwal, Alekh ;
Negahban, Sahand ;
Wainwright, Martin J. .
ANNALS OF STATISTICS, 2012, 40 (02) :1171-1197
[4]   Inhomogeneous and anisotropic conditional density estimation from dependent data [J].
Akakpo, Nathalie ;
Lacour, Claire .
ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 :1618-1653
[5]  
[Anonymous], 1998, THESIS
[6]  
[Anonymous], 1998, Sankhya: The Indian Journal of Statistics, Series A (1961-2002)
[7]  
Bakry D., 2014, Fundamental Principles of Mathematical Sciences, V348
[8]  
Bhattacharya R.N., 2009, Stochastic processes with applications
[9]  
Birge L., 2013, From Probability to Statistics and Back:High-Dimensional Models and Processes-A Festschrift in Honor of Jon A. Wellner, P47
[10]   OPTIMAL SELECTION OF REDUCED RANK ESTIMATORS OF HIGH-DIMENSIONAL MATRICES [J].
Bunea, Florentina ;
She, Yiyuan ;
Wegkamp, Marten H. .
ANNALS OF STATISTICS, 2011, 39 (02) :1282-1309