ON GENERALIZED DAVIS-WIELANDT RADIUS INEQUALITIES OF SEMI-HILBERTIAN SPACE OPERATORS

被引:5
作者
Bhanja, Aniket [1 ]
Bhunia, Pintu [2 ]
Paul, Kallol [2 ]
机构
[1] Vivekananda Coll, Dept Math, Kolkata 700063, India
[2] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
来源
OPERATORS AND MATRICES | 2021年 / 15卷 / 04期
关键词
A-Davis-Wielandt radius; A-numerical radius; A-operator seminorm; Semi-Hilbertian space; NUMERICAL RANGE; SHELL;
D O I
10.7153/oam-2021-15-76
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a positive (semidefinite) operator on a complex Hilbert space H and let A = ((A O)(O A)). We obtain upper and lower bounds for the A-Davis-Wielandt radius of semiHilbertian space operators, which generalize and improve on the existing ones. Further, we derive upper bounds for the A-Davis-Wielandt radius of the sum of the product of semi-Hilbertian space operators. We also obtain upper bounds for the A-Davis-Wielandt radius of 2x2 operator matrices. Finally, we determine the exact value for the A-Davis-Wielandt radius of two operator matrices ((I X)(O O)) and ((O X)(O O)), where X is a semi-Hilbertian space operator, and I, O are the identity operator, the zero operator on H, respectively.
引用
收藏
页码:1201 / 1225
页数:25
相关论文
共 28 条
[1]   Metric properties of projections in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (01) :11-28
[2]   Partial isometries in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1460-1475
[3]  
Baklouti H, 2020, LINEAR MULTILINEAR A, V68, P845, DOI 10.1080/03081087.2019.1593925
[4]   Joint numerical ranges of operators in semi-Hilbertian spaces [J].
Baklouti, Hamadi ;
Feki, Kais ;
Ahmed, Ould Ahmed Mahmoud Sid .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 :266-284
[5]   Bounds for the Davis-Wielandt radius of bounded linear operators [J].
Bhunia, Pintu ;
Bhanja, Aniket ;
Bag, Santanu ;
Paul, Kallol .
ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (01)
[6]   Some improvements of numerical radius inequalities of operators and operator matrices [J].
Bhunia, Pintu ;
Paul, Kallol .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (10) :1995-2013
[7]  
Bhunia P, 2020, ELECTRON J LINEAR AL, V36
[8]  
Bhunia P, 2021, B IRAN MATH SOC, V47, P435, DOI 10.1007/s41980-020-00392-8
[9]   Refinements of A-numerical radius inequalities and their applications [J].
Bhunia, Pintu ;
Nayak, Raj Kumar ;
Paul, Kallol .
ADVANCES IN OPERATOR THEORY, 2020, 5 (04) :1498-1511
[10]  
BRANGES L. DE, 1966, SQUARE SUMMABLE POWE