Enhanced sensitivity of lateral-flow test strip immunoassays using colloidal palladium nanoparticles and horseradish peroxidase

被引:29
作者
Tominaga, Tatsuya [1 ]
机构
[1] Saitama Ind Technol Ctr, North Inst, 2-133 Kumagayashi, Kumagaya, Saitama 3600031, Japan
关键词
Colloidal palladium nanoparticles; Food-borne pathogens; Horseradish peroxidase; Lateral-flow test strip immunoassays; GRADIENT GEL-ELECTROPHORESIS; COLI O157 OUTBREAKS; REAL-TIME PCR; LISTERIA-MONOCYTOGENES; RAPID DETECTION; FOOD; PRODUCTS; DISCRIMINATION; PREVALENCE; YERSINIA;
D O I
10.1016/j.lwt.2017.08.027
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Although lateral-flow test strip (LFTS) immunoassays are rapid and require no specialized equipment, they are less sensitive than culture and polymerase chain reaction (PCR)-based methods for detecting bacteria. This study compared the sensitivity of LFTS assays based on colloidal palladium nanoparticles (PdNPs) and colloidal gold nanoparticles (AuNPs). PdNPs demonstrated a time and concentration dependent oxidation of the horseradish peroxidase (HRP) substrate 3,3',5,5'-tetramethylbenzidine (TMB), whereas AuNPs did not. PdNPs labeled HRP-conjugated antibody lateral flow test strip (PdNPsHRP LFTS) assays were tested with 3,3'-diaminobenzidine (DAB), a water insoluble substrate. The sensitivity of PdNPs-HRP LFTS assays in detecting Listeria monocytogenes, Escherichia coli 0157:H7 and Yersinia enterocolitica was 5-10-fold higher than that of AuNPs-based LFTS (AuNPs LFTS) assays. PdNPsHRP LFTS assays of reduced milk inoculated with L monocytogenes were more than 10-fold more sensitive than conventional AuNPs LFTS assays. These results suggest that the PdNPs-HRP LFTS immunoassay is a promising tool for ensuring food safety. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:566 / 570
页数:5
相关论文
共 25 条
[1]   Prevalence and molecular characterization of Listeria spp. and Listeria monocytogenes isolated from fish, shrimp, and cooked ready-to-eat (RTE) aquatic products in Iran [J].
Abdollahzadeh, Esmail ;
Ojagh, Seyed Mandi ;
Hosseini, Hedayat ;
Irajian, Gholamreza ;
Ghaemi, Ezzat Allah .
LWT-FOOD SCIENCE AND TECHNOLOGY, 2016, 73 :205-211
[2]  
Barbau-Piednoir E, 2013, APPL MICROBIOL BIOT, V97, P4021, DOI [10.1007/s00253-012-4477-2, 10.1007/s00253-013-5234-x]
[3]   Use of growth inhibitors for control of Listeria monocytogenes in heat-processed ready-to-eat meat products simulating post-processing contamination [J].
Brasileiro, Isabela Sarmento ;
Barbosa, Matheus ;
Igarashi, Maria Crystina ;
Biscola, Vanessa ;
Maffei, Daniele Fernanda ;
Landgraf, Mariza ;
Gombossy de Melo Franco, Bernadette Dora .
LWT-FOOD SCIENCE AND TECHNOLOGY, 2016, 74 :7-13
[4]   Lateral-flow enzyme immunoconcentration for rapid detection of Listeria monocytogenes [J].
Cho, Il-Hoon ;
Irudayaraj, Joseph .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2013, 405 (10) :3313-3319
[5]   Immunochromatographic methods in food analysis [J].
Dzantiev, Boris B. ;
Byzova, Nadezhda A. ;
Urusov, Alexandr E. ;
Zherdev, Anatoly V. .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2014, 55 :81-93
[6]  
Fukushima H., 2011, J PATHOGENS, P1
[7]   Application of real-time PCR to detect Listeria monocytogenes in a mussel processing industry: Impact on control [J].
Garrido-Maestu, Alejandro ;
Chapela, Maria-Jose ;
Vieites, Juan M. ;
Cabado, Ana G. .
FOOD CONTROL, 2014, 46 :319-323
[8]   Detection of Yersinia enterocolitica in food: an overview [J].
Gupta, V. ;
Gulati, P. ;
Bhagat, N. ;
Dhar, M. S. ;
Virdi, J. S. .
EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2015, 34 (04) :641-650
[9]   Escherichia coli O157 Outbreaks in the United States, 2003-2012 [J].
Heiman, Katherine E. ;
Mody, Raja K. ;
Johnson, Shacara D. ;
Griffin, Patricia M. ;
Gould, L. Hannah .
EMERGING INFECTIOUS DISEASES, 2015, 21 (08) :1293-1301
[10]   Listeria monocytogenes in Aquatic Food Products-A Review [J].
Jami, Mansooreh ;
Ghanbari, Mahdi ;
Zunabovic, Marija ;
Domig, Konrad J. ;
Kneifel, Wolfgang .
COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 2014, 13 (05) :798-813