A Metal-Organic Framework with Optimized Open Metal Sites and Pore Spaces for High Methane Storage at Room Temperature

被引:324
作者
Guo, Zhiyong [1 ]
Wu, Hui [2 ,3 ]
Srinivas, Gadipelli [2 ,4 ]
Zhou, Yaming [5 ]
Xiang, Shengchang [1 ]
Chen, Zhenxia [5 ]
Yang, Yongtai [5 ]
Zhou, Wei [2 ,3 ]
O'Keeffe, Michael [6 ]
Chen, Banglin [1 ]
机构
[1] Univ Texas San Antonio, Dept Chem, San Antonio, TX 78249 USA
[2] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA
[3] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[4] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[5] Fudan Univ, Dept Chem, Shanghai, Peoples R China
[6] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
关键词
methane storage; microporous materials; molecular recognition; open metal sites; organic-inorganic hybrid composites; HIGH-CAPACITY; GAS-STORAGE; DESIGN; RECOGNITION; ACETYLENE; HYDROGEN; SORPTION;
D O I
10.1002/anie.201007583
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Holey MOF! Open copper sites and optimal pore spaces in UTSA-20 (see picture), a MOF based on the novel trinodal (3,3,4) net, has made UTSA-20 into the material with the highest methane storage density (0.22-gcm-3) in micropores, and one of the few porous MOFs with storage volume capacity (195-cm3cm-3) surpassing the DOE methane target of 180-cm3cm-3 at room temperature and 35-bar. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:3178 / 3181
页数:4
相关论文
共 49 条
[1]  
[Anonymous], ANGEW CHEM INT ED
[2]   Role and Effective Treatment of Dispersive Forces in Materials: Polyethylene and Graphite Crystals as Test Cases [J].
Barone, Vincenzo ;
Casarin, Maurizio ;
Forrer, Daniel ;
Pavone, Michele ;
Sambi, Mauro ;
Vittadini, Andrea .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (06) :934-939
[3]  
Burchell T., 2000, SAE TECH PAP SER
[4]   Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules [J].
Chen, Banglin ;
Xiang, Shengchang ;
Qian, Guodong .
ACCOUNTS OF CHEMICAL RESEARCH, 2010, 43 (08) :1115-1124
[5]   A New Multidentate Hexacarboxylic Acid for the Construction of Porous Metal-Organic Frameworks of Diverse Structures and Porosities [J].
Chen, Zhenxia ;
Xiang, Shengchang ;
Liao, Tengbiao ;
Yang, Yongtai ;
Chen, Yu-Sheng ;
Zhou, Yaming ;
Zhao, Dongyuan ;
Chen, Banglin .
CRYSTAL GROWTH & DESIGN, 2010, 10 (06) :2775-2779
[6]   Industrial applications of metal-organic frameworks [J].
Czaja, Alexander U. ;
Trukhan, Natalia ;
Mueller, Ulrich .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) :1284-1293
[7]  
Dinca M., 2008, Angew. Chem, V120, P6870, DOI DOI 10.1002/ANGE.200801163
[8]   Hydrogen storage in microporous metal-organic frameworks with exposed metal sites [J].
Dinca, Mircea ;
Long, Jeffrey R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (36) :6766-6779
[9]   Calculating geometric surface areas as a characterization tool for metal-organic frameworks [J].
Dueren, Tina ;
Millange, Franck ;
Ferey, Gerard ;
Walton, Krista S. ;
Snurr, Randall Q. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (42) :15350-15356
[10]   Using molecular simulation to characterise metal-organic frameworks for adsorption applications [J].
Dueren, Tina ;
Bae, Youn-Sang ;
Snurr, Randall Q. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) :1237-1247