Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L

被引:71
|
作者
Wang, Gen [1 ]
Wang, Li [1 ]
Ma, Fang [1 ]
You, Yongqiang [1 ]
Wang, Yujiao [1 ]
Yang, Dongguang [1 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, 73 Huanghe Rd, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
Rhizophagus irregularis; Eisenia fetida; Hyperaccumulator; Co-inoculation; Cd fraction; HEAVY-METALS; ENZYME-ACTIVITIES; LANTANA-CAMARA; PLANT-GROWTH; CD UPTAKE; SPECIATION; AVAILABILITY; BIOAVAILABILITY; ZINC; ROOT;
D O I
10.1016/j.jhazmat.2019.121873
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Arbuscular mycorrhizal fungi (AMF) and earthworms independently enhance plant growth, heavy metal (HM) tolerance, and HM uptake, thus they are potential key factors in phytoremediation. However, few studies have investigated their interactions in HM phytoextraction by hyperaccumulators. This study highlights the independent and interactive effects of earthworms and AMF on Solanum nigrum. Plants inoculated with either AMF or earthworms exhibited ameliorated growth via enhancement of productivity, metal tolerance, and phosphorus (P) acquisition. Co-inoculation with both had more pronounced effects on plant biomass and P acquisition in shoots, but not in roots, and in Cd-polluted soils it significantly promoted (P< 0.05) shoot biomass (20.7-134.6 %) and P content (20.4-112.0 %). AMF and earthworms increased Cd accumulation in plant tissues, but only AMF affected Cd partitioning between shoots and roots. Although AMF decreased root-to-shoot translocation of Cd at high Cd levels, this was counterbalanced by earthworms. Both AMF and its combination with earthworms enhanced Cd phytoavailability by altering Cd chemical fractions and decreasing pH. Co-inoculation increased Cd removal amounts up to 149.3 % in 120 mg kg(-1) Cd-spiked soils. Interactions between the two organisms were synergistic in Cd phytoextraction. Thus, earthworm-AMF-plant symbiosis potentially plays an essential role in phytoremediation of HM-polluted soils.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Arbuscular mycorrhizal fungi: an ecological accelerator of phytoremediation of metal contaminated soils
    Tiwari, Jaya
    Ma, Ying
    Bauddh, Kuldeep
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2022, 68 (02) : 283 - 296
  • [22] Agricultural Technologies for Enhancing the Phytoremediation of Cadmium-Contaminated Soil by Amaranthus hypochondriacus L.
    Ningyu Li
    Zhian Li
    Qinglin Fu
    Ping Zhuang
    Bin Guo
    Hua Li
    Water, Air, & Soil Pollution, 2013, 224
  • [23] Phytoremediation of cadmium-contaminated soil through multipurpose tree species
    Kaur, Balwinder
    Singh, Baljit
    Kaur, Navneet
    Singh, Dhanwinder
    AGROFORESTRY SYSTEMS, 2018, 92 (02) : 473 - 483
  • [24] Solanum spp. straw improves phytoremediation ability of hyperaccumulator Galinsoga parviflora on cadmium-contaminated soil
    Dai, Jingtong
    Chen, Xu
    Wang, Jiangyue
    Cheng, Qi
    Li, Rui
    Lin, Lijin
    Wang, Li
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2023, 42 (01)
  • [25] Phytoremediation of cadmium-contaminated soil through multipurpose tree species
    Balwinder Kaur
    Baljit Singh
    Navneet Kaur
    Dhanwinder Singh
    Agroforestry Systems, 2018, 92 : 473 - 483
  • [26] Soil Biogeochemistry, Plant Physiology, and Phytoremediation of Cadmium-Contaminated Soils
    He, Shanying
    He, Zhenli
    Yang, Xiaoe
    Stoffella, Peter J.
    Baligar, Virupax C.
    ADVANCES IN AGRONOMY, VOL 134, 2015, 134 : 135 - 225
  • [27] Agricultural Technologies for Enhancing the Phytoremediation of Cadmium-Contaminated Soil by Amaranthus hypochondriacus L.
    Li, Ningyu
    Li, Zhian
    Fu, Qinglin
    Zhuang, Ping
    Guo, Bin
    Li, Hua
    WATER AIR AND SOIL POLLUTION, 2013, 224 (09):
  • [28] Remediation of polychlorinated biphenyl-contaminated soil by using a combination of ryegrass, arbuscular mycorrhizal fungi and earthworms
    Lu, Yan-Fei
    Lu, Mang
    Peng, Fang
    Wan, Yun
    Liao, Min-Hong
    CHEMOSPHERE, 2014, 106 : 44 - 50
  • [29] Effects of elevated CO2 on arbuscular mycorrhizal fungi associated with Robinia pseudoacacia L. grown in cadmium-contaminated soils
    Wang, Lu
    Jia, Xia
    Zhao, Yonghua
    Zhang, ChunYan
    Gao, Yunfen
    Li, Xiaodi
    Cao, Kemeng
    Zhang, Ningjing
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 768
  • [30] Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi
    Marques, Ana P. G. C.
    Oliveira, Rui S.
    Rangel, Antonio O. S. S.
    Castro, Paula M. L.
    ENVIRONMENTAL POLLUTION, 2008, 151 (03) : 608 - 620