Inhibitory effect of coumarins from Weigela subsessilis on low density lipoprotein oxidation

被引:26
作者
Thuong, PT
Na, M
Su, ND
Seong, RS
Lee, YM
Sok, DE
Bae, K [1 ]
机构
[1] Chungnam Natl Univ, Coll Pharm, Taejon 305764, South Korea
[2] Korea Food & Drug Adm, Seoul 122704, South Korea
[3] Wonkwang Univ, Coll Pharm, Iksan 540749, Cheonbuk, South Korea
关键词
Weigela subsessilis; coumarin; scopoletin; cleomiscosin A; LDL oxidation; apolipoprotein B-100;
D O I
10.1248/bpb.28.1095
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Oxidation of low density lipoprotein (LDL) is thought to be a major factor in the pathophysiology of atherosclerosis. In the present study, we found that coumarins isolated from Weigela subsessilis (Caprifoliaceae) inhibited LDL oxidation mediated by either catalytic copper ions (Cu2+) or free radicals generated with the azo compound 2,2'-azobis-(2-amidinopropane)dihydrochloride (AAPH). Of the cournarins tested, scopoletin (1) and cleomiscosin A (2) increased the lag time of conjugated diene formation and inhibited the generation of thiobarbituric acid reactive substances (TBARS) in a dose-dependent manner. In addition, it was found that compounds 1 and 2 had the capacity to protect the fragmentation of apolipoprotein B-100 (apoB-100). These results suggest that W. subsessilis and its active coumarins, 1 and 2, may have a role to play in preventing the LDL oxidation involved in atherogenesis.
引用
收藏
页码:1095 / 1097
页数:3
相关论文
共 20 条
[1]   The role of oxidized lipoproteins in atherogenesis [J].
Berliner, JA ;
Heinecke, JW .
FREE RADICAL BIOLOGY AND MEDICINE, 1996, 20 (05) :707-727
[2]   Flavonoid chemistry of Weigela (Caprifoliaceae) in Korea [J].
Chang, CS .
JOURNAL OF PLANT RESEARCH, 1997, 110 (1098) :275-281
[3]   The oxidative modification hypothesis of atherogenesis: An overview [J].
Chisolm, GM ;
Steinberg, D .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 28 (12) :1815-1826
[4]   Mechanisms of disease - Antioxidants and atherosclerotic heart disease [J].
Diaz, MN ;
Frei, B ;
Vita, JA ;
Keaney, JF .
NEW ENGLAND JOURNAL OF MEDICINE, 1997, 337 (06) :408-416
[5]   METHODS FOR DETERMINATION OF ALDEHYDIC LIPID-PEROXIDATION PRODUCTS [J].
ESTERBAUER, H ;
ZOLLNER, H .
FREE RADICAL BIOLOGY AND MEDICINE, 1989, 7 (02) :197-203
[6]   Mechanisms for oxidizing low-density lipoprotein - Insights from patterns of oxidation products in the artery wall and from mouse models of atherosclerosis [J].
Gaut, JP ;
Heinecke, JW .
TRENDS IN CARDIOVASCULAR MEDICINE, 2001, 11 (3-4) :103-112
[7]   Evaluation of apolipoprotein B-100 fragmentation and cross-linkage in serum as an index of atherosclerosis [J].
Hashimoto, R ;
Matsukawa, N ;
Nariyama, Y ;
Ogiri, Y ;
Hamagawa, E ;
Tanaka, K ;
Usui, Y ;
Nakano, S ;
Maruyama, T ;
Kyotani, S ;
Tsushima, M ;
Kojo, S .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2002, 1584 (2-3) :123-128
[8]   Oxidation of low density lipoproteins in the pathogenesis of atherosclerosis [J].
Holvoet, P ;
Collen, D .
ATHEROSCLEROSIS, 1998, 137 :S33-S38
[9]   Inhibition of human low density lipoprotein oxidation by flavonols and their glycosides [J].
Hou, LF ;
Zhou, B ;
Yang, L ;
Liu, ZL .
CHEMISTRY AND PHYSICS OF LIPIDS, 2004, 129 (02) :209-219
[10]   Protection of low density lipoprotein oxidation by the antioxidant agent IRFI005, a new synthetic hydrophilic vitamin E analogue [J].
Iuliano, L ;
Pedersen, JZ ;
Camastra, C ;
Bello, V ;
Ceccarelli, S ;
Violi, F .
FREE RADICAL BIOLOGY AND MEDICINE, 1999, 26 (7-8) :858-868